CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wanigarathna, Nadeeshani"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Machine learning application to disaster damage repair cost modelling of residential buildings
    (Taylor and Francis, 2025) Wanigarathna, Nadeeshani; Xie, Ying; Henjewele, Christian; Morga, Mariantonietta; Jones, Keith
    Restoring residential buildings following earthquake damage requires a significant level of resources. Being able to predict these resource requirements in advance and accurately improves the effectiveness of disaster preparedness and subsequent recovery activities. This research explored how the latest ML algorithms could be used for antecedent earthquake loss modelling. A cost database for repairing residential buildings damaged by the Emilia Romagna earthquake in Italy was analysed using six state-of-the-art ML models to explore their ability to predict repair cost rates(cost per floor area) for a domestic building damaged by earthquakes. A Gradient Boost Regression model outperformed five other models in predicting earthquake damage repair cost rate. The performance of this model was significantly accurate and covers about 76% of the cases. A further SHAP analysis revealed that operational level, damage level and non-housing area of the buildings as top 3 important features when predicting the resultant damage repair cost rate. Overall this research advanced antecedent earthquake loss modelling approaches to increase the accuracy of estimates by incorporating more variables than the widely used damage level based simple methodology.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback