CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wilson, Francois"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Dynamic flow distortion investigation in an S-duct using DDES and SPIV data
    (American Institute of Aeronautics and Astronautics, 2016-06-30) Gil-Prieto, Daniel; MacManus, David G.; Zachos, Pavlos K.; Tanguy, Geoffrey; Wilson, Francois; Chiereghin, Nicola
    The dynamic flow distortion generated within convoluted aero-engine intakes can affect the performance and operability of the engine. There is a need for a better understanding of the main flow mechanisms which promote flow distortion at the exit of S-shaped intakes. This paper presents a detailed analysis of the main coherent structures in an S-duct flow field based on a Delayed Detached Eddy Simulation (DDES). The DDES capability to capture the characteristics of the highly unsteady flow field is demonstrated against high resolution, synchronous Stereoscopic Particle Image Velocimetry (SPIV) measurements at the Aerodynamic Interface Plane (AIP). The flow field mechanisms responsible for the main AIP perturbations are identified. Clockwise and counter-clockwise stream-wise vortices are alternately generated around the separation region at a frequency of St=0.53, which promotes the swirl switching at the AIP. Spanwise vortices are also shed from the separation region at a frequency of St=1.06, and convect downstream along the separated centreline shear layer. This results in a vertical modulation of the main loss region and a fluctuation of the velocity gradient between the high and low velocity flow at the AIP.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback