CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Xu, Weize"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Spatial reticulate polytriphenylamine cathode material with enhanced capacity for rechargeable aluminum ion batteries
    (Springer, 2023-07-03) Tao, Fei; Wei, Guokang; Xu, Xinqi; Xu, Weize; Xie, Wei; Yang, Jianhong; Luo, Zhenhua; Li, Xin; Qiao, Jia
    Rechargeable aluminum ion batteries (RAIBs) are a very attractive option for large-scale energy storage thanks to their promising theoretical capacity, high energy density, low cost, abundant earth resources, and environmental friendliness. While the cathode materials chosen and prepared are so essential for the electrochemical performance of RAIBs that extensive efforts and research have been done. In this study, the electrochemical performances of RAIBs were optimally improved by the chemical polymerization of triphenylamine to obtain polytriphenylamine (PTPAn) as the cathode material. The polymerization process improved the spatial reticulate structure of triphenylamine, gained a three-dimensional mesh-like nanostructure, which provided more chemical reaction sites and ion reaction channels, greatly increased the specific surface area, and accelerated the electrochemical reaction kinetics. On this basis, a stable discharge-specific capacity of around 137.4 mAh g−1 was achieved at high current densities of 1 A g−1 for the PTPAn cathode, and the Coulombic efficiency was maintained at about 99% after the life of 500 cycles. The understanding and appreciation of the charging and discharging working principle of PTPAn material as RAIBs cathode, meantime, were deepened by a multitude of ex-situ experiments. These findings are anticipated to serve as the cornerstone for the subsequent development of large-scale RAIBs systems for energy storage that use organic polymers as the cathode material.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback