Browsing by Author "Yang, Jien"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Additive engineering for improving the stability of tin-based perovskite (FASnI3) solar cells(Elsevier, 2022-08-05) Li, Shaojie; Yang, Feng; Chen, Mengmeng; Yang, Jien; Jiang, Lulu; Sun, Yunjuan; Grace, Andrews Nirmala; Jain, Sagar M.; Liu, HairuiDuring the past few years, Tin (Sn)-based perovskites have been extensively investigated in the field of photovoltaics as promising candidates for new generation lead-free perovskite. Tin-based perovskites (ASnI3) present excellent photoelectric properties. However, there still remains a big concern over unsatisfactory stability. In reality, extensive efforts have been committed to improve the stability of perovskite active layer. In this review, a comprehensive understanding on defect formation, oxidation mechanism of Sn2+. Then, a detailed discussion on the recent advance the effect of additive engineering for the stability of FASnI3 PSCs, including antioxidants, 2D perovskite materials and functional passive molecular. Lastly, several key scientific issues and future research prospectives are proposed for achieving stable and high-performance Sn-based perovskite photovoltaics.Item Open Access Dopants for enhanced performance of tin-based perovskite solar cells—a short review(MDPI, 2021-08-30) Liu, Hairui; Zhang, Zuhong; Yang, Feng; Yang, Jien; Grace, Andrews Nirmala; Li, Junming; Tripathi, Sapana; Jain, Sagar M.Lead-based perovskite solar cells had reached a bottleneck and demonstrated significant power conversion efficiency (PCE) growth matching the performance of traditional polycrystalline silicon solar cells. Lead-containing perovskite solar cell technology is on the verge of commercialization and has huge potential to replace silicon solar cells, but despite the very promising future of these perovskite solar cells, the presence of water-soluble toxic lead content is a growing concern in the scientific community and a major bottleneck for their commercialization. The less toxic, tin-based perovskite solar cells are promising alternatives for lead-free perovskite solar cells. Like lead-based perovskite, the general chemical formula composition of tin-based perovskite is ASnX3, where A is a cation and X is an anion (halogen). It is evident that tin-based perovskites, being less-toxic with excellent photoelectric properties, show respectable performance. Recently, numerous studies reported on the fabrication of Sn-based perovskite solar cells. However, the stability of this novel lead-free alternative material remains a big concern. One of the many ways to stabilize these solar cells includes addition of dopants. In this context, this article summarizes the most important fabrication routes employing dopants that have shown excellent stability for tin-based perovskite photovoltaics and elaborates the prospects of lead-free, tin based stable perovskite photovoltaics.Item Open Access Enhanced performance of CsPbIBr2 perovskite solar cell by modified zinc oxide nanorods array with [6,6]‐Phenyl C61 butyric acid(Wiley, 2023-04-12) Yang, Jien; Zhang, Meng; Zhang, Qiong; Qin, Chaochao; Qin, Ruiping; Jain, Sagar M.; Liu, HairuiAlthough Metal oxide ZnO is widely used as electron transport layers in all-inorganic PSCs due to high electron mobility, high transmittance, and simple preparation processing, the surface defects of ZnO suppress the quality of perovskite film and inhibit the solar cells’ performance. In this work, [6,6]-Phenyl C61 butyric acid (PCBA) modified zinc oxide nanorods (ZnO NRs) is employed as electron transport layer in perovskite solar cells. The resulting perovskite film coated on the zinc oxide nanorods has better crystallinity and uniformity, facilitating charge carrier transportation, reducing recombination losses, and ultimately improving the cells’ performance. The perovskite solar cell with the device configuration of ITO/ZnO nanorods/PCBA/CsPbIBr2/Spiro-OMeTAD/Au delivers a high short circuit current density of 11.83 mA cm-2 and power conversion efficiency of 12.05 %.Item Open Access Graphene-like dispersion and strong optical absorption in two-dimensional RP-type Sr3Ti2S7 perovskite(American Chemical Society, 2023-11-15) Liu, Hairui; Gao, Rui; Yang, Jien; Banthia, Rohan Dinesh; Yang, Feng; Wang, Tianxing; Upadhyaya, Hari; Jain, Sagar M.Two-dimensional (2D) Ruddlesden–Popper (RP) perovskite alloys have recently become attractive due to many desired physical properties originating from distinct van der Waals-type layered structures. In this work, a novel 2D RP-type Sr3Ti2S7 perovskite material design is proposed by using first-principles calculations. Our results reveal that the 2D Sr3Ti2S7 perovskite possesses dynamically stable structures, direct band structures with a band gap value of 0.86 eV, and a smaller effective mass (0.15/0.25 m0 for electron/hole) than MAPbI3 and phosphorene. More importantly, 2D Sr3Ti2S7 possesses wide optical spectra (from infrared-to ultraviolet-light region) and a higher absorption coefficient (105 cm–1) than MAPbI3, silicon, and MoS2 in the visible-light region. Interestingly, we also find that the ideal Dirac-like linear dispersion can appear near the Fermi level in the electronic band structures when compressive strain is applied. Especially, the Dirac-cone-like band structures can be realized when compressive strain is enhanced to −6%, indicating ultrahigh carrier mobility. These properties make the 2D Sr3Ti2S7 perovskite a promising candidate for future applications in solar cells and optoelectronic devices.