Browsing by Author "Yang, Yung-Hun"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Advances in algal biomass pretreatment and its valorisation into biochemical and bioenergy by the microbial processes(Elsevier, 2022-06-09) Bhatia, Shashi Kant; Ahuja, Vishal; Chandel, Neha; Gurav, Ranjit; Bhatia, Ravi Kant; Govarthanan, Muthusamy; Tyagi, Vinay Kumar; Kumar, Vinod; Pugazendhi, Arivalagan; Banu, J. Rajesh; Yang, Yung-HunUrbanization and pollution are the major issues of the current time own to the exhaustive consumption of fossil fuels which have a detrimental effect on the nation's economies and air quality due to greenhouse gas (GHG) emissions and shortage of energy reserves. Algae, an autotrophic organism provides a green substitute for energy as well as commercial products. Algal extracts become an efficient source for bioactive compounds having anti-microbial, anti-oxidative, anti-inflammatory, and anti-cancerous potential. Besides the conventional approach, residual biomass from any algal-based process might act as a renewable substrate for fermentation. Likewise, lignocellulosic biomass, algal biomass can also be processed for sugar recovery by different pre-treatment strategies like acid and alkali hydrolysis, microwave, ionic liquid, and ammonia fiber explosion, etc. Residual algal biomass hydrolysate can be used as a feedstock to produce bioenergy (biohydrogen, biogas, methane) and biochemicals (organic acids, polyhydroxyalkanoates) via microbial fermentation.Item Open Access From brew to table: unleashing the potential of spent grains protein(Elsevier, 2024-03-27) Ahuja, Vishal; Chauhan, Shikha; Yang, Yung-Hun; Bhatia, Shashi Kant; Kumar, VinodUnited Nations and Upcycled Food Association have suggested the possible use of food processing residues and waste materials to improve food quality as well as overcome hunger and malnutrition. Brewer's spent grains (BSG) account 85% of brewery waste having high nutritive value. Spent grains are initially exploited for animal feed only and restricted to the local area due to high moisture content that leads to spoilage. Spent grains are rich in fibre and proteins and were explored for the preparation of cookies, bread, pasta, and noodles which showed higher nutritive value and health benefits in comparison to conventional materials. The bioactive compounds in spent grains also provide additional advantages and can be used in drug formulation for commercial products. However, it needs in-depth research and technical support that aid in contributing to the circular economy.Item Open Access Microbial exopolysaccharide composites in biomedicine and healthcare: trends and advances(MDPI, 2023-04-06) Ahuja, Vishal; Bhatt, Arvind Kumar; Banu, J. Rajesh; Kumar, Vinod; Kumar, Gopalakrishnan; Yang, Yung-Hun; Bhatia, Shashi KantMicrobial exopolysaccharides (EPSs), e.g., xanthan, dextran, gellan, curdlan, etc., have significant applications in several industries (pharma, food, textiles, petroleum, etc.) due to their biocompatibility, nontoxicity, and functional characteristics. However, biodegradability, poor cell adhesion, mineralization, and lower enzyme activity are some other factors that might hinder commercial applications in healthcare practices. Some EPSs lack biological activities that make them prone to degradation in ex vivo, as well as in vivo environments. The blending of EPSs with other natural and synthetic polymers can improve the structural, functional, and physiological characteristics, and make the composites suitable for a diverse range of applications. In comparison to EPS, composites have more mechanical strength, porosity, and stress-bearing capacity, along with a higher cell adhesion rate, and mineralization that is required for tissue engineering. Composites have a better possibility for biomedical and healthcare applications and are used for 2D and 3D scaffold fabrication, drug carrying and delivery, wound healing, tissue regeneration, and engineering. However, the commercialization of these products still needs in-depth research, considering commercial aspects such as stability within ex vivo and in vivo environments, the presence of biological fluids and enzymes, degradation profile, and interaction within living systems. The opportunities and potential applications are diverse, but more elaborative research is needed to address the challenges. In the current article, efforts have been made to summarize the recent advancements in applications of exopolysaccharide composites with natural and synthetic components, with special consideration of pharma and healthcare applications.Item Open Access Molecular biology interventions for activity improvement and production of industrial enzymes(Elsevier, 2020-12-24) Bhatia, Shashi Kant; Vivek, Narisetty; Kumar, Vinod; Chandel, Neha; Thakur, Meenu; Kumar, Dinesh; Yang, Yung-Hun; Pugazhendhi, Arivalagan; Kumar, GopalakrishnanMetagenomics and directed evolution technology have brought a revolution in search of novel enzymes from extreme environment and improvement of existing enzymes and tuning them towards certain desired properties. Using advanced tools of molecular biology i.e. next generation sequencing, site directed mutagenesis, fusion protein, surface display, etc. now researchers can engineer enzymes for improved activity, stability, and substrate specificity to meet the industrial demand. Although many enzymatic processes have been developed up to industrial scale, still there is a need to overcome limitations of maintaining activity during the catalytic process. In this article recent developments in enzymes industrial applications and advancements in metabolic engineering approaches to improve enzymes efficacy and production are reviewedItem Open Access Progress in microalgal mediated bioremediation systems for the removal of antibiotics and pharmaceuticals from wastewater(Elsevier, 2022-02-16) Chandel, Neha; Ahuja, Vishal; Gurav, Ranjit; Kumar, Vinod; Tyagi, Vinay Kumar; Pugazhendhi, Arivalagan; Kumar, Gopalakrishnan; Kumar, Deepak; Yang, Yung-Hun; Bhatia, Shashi KantWorldwide demand for antibiotics and pharmaceutical products is continuously increasing for the control of disease and improvement of human health. Poor management and partial metabolism of these compounds result in the pollution of aquatic systems, leading to hazardous effects on flora, fauna, and ecosystems. In the past decade, the importance of microalgae in micropollutant removal has been widely reported. Microalgal systems are advantageous as their cultivation does not require additional nutrients: they can recover resources from wastewater and degrade antibiotics and pharmaceutical pollutants simultaneously. Bioadsorption, degradation, and accumulation are the main mechanisms involved in pollutant removal by microalgae. Integration of microalgae-mediated pollutant removal with other technologies, such as biodiesel, biochemical, and bioelectricity production, can make this technology more economical and efficient. This article summarizes the current scenario of antibiotic and pharmaceutical removal from wastewater using microalgae-mediated technologies.