CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yao, Haotian"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Slope-based shape cluster method for smart metering load profiles
    (IEEE, 2020-01-10) Xiang, Yue; Hong, Juhua; Yang, Zhiyu; Wang, Yang; Huang, Yuan; Zhang, Xin; Chai, Yanxin; Yao, Haotian
    Cluster analysis is used to study the group of load profiles from smart meters to improve the operability in distribution network. The traditional K-means clustering analysis method employs Euclidean distance as similarity measurement, which is insufficient in reflecting the shape similarities of load profiles. In this work, we propose a novel shape cluster method based on the segmented slope of load profiles. Compared with traditional K-means and two improved algorithms, the proposed method can improve the clustering accuracy and efficiency by capturing the shape features of smart metering load profiles.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback