Browsing by Author "Yao, Ming"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Efficient gas adsorption using superamphiphobic porous monoliths as the under-liquid gas-conductive circuits(American Chemical Society, 2019-06-14) Wen, Min; Peng, Cheng; Yao, Ming; Wang, Chao; Ming, Tingzhen; Peng, Biaoling; Huang, Fuzhi; Zhong, Jie; Cheng, Yi-Bing; Zhang, QiThe gas–liquid membrane contactor forms a gas–solid–liquid interface and has a high potential for the applications in gas adsorption, catalysis, energy exchange, and so on. Porous superhydrophobic membranes show a great gas separation/adsorption ability. However, the complicated device architecture and the durability issue are normally concerned especially for the continuous circulation of gas and liquid. In this work, we present a free-standing gas-conductive circuit simply formed by connecting the superamphiphobic porous monoliths (SAPMs) to achieve an efficient under-liquid gas adsorption. The porous worm-like SAPM is prepared with low-temperature expandable graphite and polyvinylidenefluoride, exhibiting superamphiphobicity and superaerophilicity after fluoridation. The as-made SAPM circuits can be used as a reliable gas conductor under numerous liquids, such as water, alkaline, acidic, and oily solutions. In this work, the CO2 adsorption capacities of the SAPM circuits are evaluated under NaOH and methyldiethanolamine solutions and the mass transfer rate can reach up to 9.61 mmol m–2 s–1. Moreover, the effective human blood oxygenation process is also demonstrated using SAPM circuits. Thus, the reported SAPM provides an alternative gas–liquid exchanging method and the simplified process could be of great benefit to the cost-effectively large-scale CO2 capture or gas exchanging applications.Item Open Access Sequentially reinforced additive coating for transparent and durable superhydrophobic glass(American Chemical Society, 2018-09-05) Zhao, Shuangjie; Zhao, Juan; Wen, Min; Yao, Ming; Wang, Fengjue; Huang, Fuzhi; Zhang, Qi; Cheng, Yi-Bing; Zhong, JieNow that there are various routes to prepare superhydrophobic surfaces for self-cleaning, anti-icing, liquid collecting, etc., attentions are moving toward low-cost upscaling of routes and increasing the reliability for actual applications. However, the required micro–nano structures for superhydrophobicity are light scattering and very vulnerable to abrasion. This intrinsically conflicts with the transparency and durability of superhydrophobic glass, which are the major barriers for its commercialization. In this study, we present a novel sequentially reinforced additive coating (SRAC) process to realize robust and transparent micro–nano structured film with tough intergranular sintering. A benign aqueous-based ink with poly(furfuryl alcohol) (PFA) and silica species is carefully designed and sprayed on glass to enable self-phase separation and morphology construction. The coatings reach the static contact angle (SCA) for water over 166° and withstand a 6H pencil scratching, the cross-cut test, and sand abrasion. Moreover, we also performed a 90 day outdoor performance test and the glass maintained superhydrophobicity with an SCA of 154°. These results provide a low-cost waterborne ink formula, and the high throughput and upscalable SRAC process could be a convenient technology for the fabrication of large area, robust superhydrophobic coatings.