CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhang, Ao"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A machine learning-based approach for elevator door system fault diagnosis
    (IEEE, 2022-10-28) Liang, Taiwang; Chen, Chong; Wang, Tao; Zhang, Ao; Qin, Jian
    The door system is the core part of the elevator. An accurate diagnosis of the door system can aid engineers in troubleshooting and reduce maintenance costs. However, the research of fault diagnosis based on elevator operation and maintenance data is still in its infancy. With the development of the industrial Internet-of-things, real-time monitoring data of elevator can be collected and used for fault diagnosis modeling. This paper investigates a machine learning-based approach to achieve accurate elevator door fault diagnosis. An experimental study was conducted based on the monitoring data collected from the real-world elevator door system. The experimental results revealed that XGBoost algorithm can accurately identify the fault type of the elevator door.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback