CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhang, Yin"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Abnormal grain growth in ultrafine grained Ni under high-cycle loading
    (Elsevier, 2021-11-02) Barrios, Alejandro; Zhang, Yin; Maeder, Xavier; Castelluccio, Gustavo M.; Pierron, Olivier; Zhu, Ting
    Abnormal grain growth can occur in polycrystalline materials with only a fraction of grains growing drastically to consume other grains. Here we report abnormal grain growth in ultrafine grained metal in a rarely explored high-cycle loading regime at ambient temperature. Abnormal grain growth is observed in electroplated Ni microbeams with average initial grain sizes less than 640 nm under a large number of loading cycles (up to 109) with low strain amplitudes (< 0.3%). Such abnormal grain growth occurs predominantly in the family of grains whose <100> orientation is along the tensile/compressive loading direction. Micromechanics analysis suggests that the elastic anisotropy of grains dictates the thermodynamic driving force of abnormal grain growth, such that the lowest strain energy density of the <100> oriented grain family dominates grain growth. This work unveils a unique type of abnormal grain growth that may be harnessed to tailor grain microstructures in materials.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback