CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhang, Yongliang"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Hydrodynamic performance of a three-unit heave wave energy converter array under different arrangement
    (Elsevier, 2023-12-17) Chen, Wenchuang; Huang, Zhenhai; Zhang, Yongliang; Wang, Liguo; Huang, Luofeng
    A pile-restrained floating wave energy converter (WEC) array is proposed as an alternative to a single floater of the size of the array for use as a floating breakwater. The hydrodynamics of the WEC are modelled based on the Navier-Stokes equations and the model is verified by comparing its results with existing experimental data. The model then is used to characterize the array composed by a line of three WECs in terms of floater heaving, wave energy conversion, wave reflection, transmission and dissipation, for different layouts. In the examined array configuration, the aligned arrays exhibit superior performance compared to the staggered arrays, comprehensively considering both wave energy conversion and wave transmission. Specifically, when khi > 1.73, the wave energy conversion efficiency of the aligned array with a spacing of 0.1 times the WEC width ranges from 0.141 to 0.330, while the wave transmission coefficient ranges from 0.187 to 0.472, indicating the effectiveness of the arrays in simultaneously reducing wave transmission and converting wave energy under shorter-wavelength conditions. Compared to a single WEC of the same dimensions, the array exhibits a remarkable increase in wave energy conversion efficiency and effectively reduce wave reflection.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Improving wave energy conversion performance of a floating BBDB-OWC system by using dual chambers and a novel enhancement plate
    (Elsevier, 2024-03-23) Chen, Wenchuang; Xie, Weixin; Zhang, Yongliang; Wang, Chen; Wang, Liguo; Huang, Luofeng
    In this study, a novel floating dual-chamber backward bent duct buoy oscillating water column (BBDB-OWC) wave energy converter (WEC) is introduced, featuring a horizontal plate at the bottom of the front chamber to act as an enhancement plate. A three-dimensional computational fluid dynamics (CFD) model is developed and validated by comparing its results with existing experimental measurements. The validated model is employed to investigate the hydrodynamic performance and power generation characteristics of the dual-chamber BBDB-OWC WEC under various conditions, including variations in the length of the horizontal plate (lp/lf) and different regular wave conditions. Key performance metrics, including peak to average ratio of power (PTARP), wave energy capture width ratio (ξtotal), and its wave period respond bandwidth (indicated by Pξtotal > 0.5 and Pξtotal > 0.7), are analyzed and compared with those of a traditional single-chamber BBDB-OWC WEC. The results reveal that, compared to the single-chamber WEC, the dual-chamber WEC with a specific horizontal plate length reduces the average PTARP from 2.88 to a minimum value of 1.82 for lp/lf = 0.5, improves the average ξtotal from 0.55 to a maximum value of 0.64 for lp/lf = 2.5, and increases Pξtotal > 0.5 and Pξtotal > 0.7 from 71 % and 14 % to maximum values of 86 % and 43 % for lp/lf = 2.5, respectively. An explanation for these observations is also provided in the context of structure motion and flow fields.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback