Browsing by Author "Zou, Jiaru"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access A revised Hilbert-Huang transformation to track non-stationary association of electroencephalography signals(IEEE, 2021-04-28) Shan, Xiaocai; Huo, Shoudong; Yang, Lichao; Cao, Jun; Zou, Jiaru; Chen, Liangyu; Sarrigiannis, Ptolemaios Georgios; Zhao, YifanThe time-varying cross-spectrum method has been used to effectively study transient and dynamic brain functional connectivity between non-stationary electroencephalography (EEG) signals. Wavelet-based cross-spectrum is one of the most widely implemented methods, but it is limited by the spectral leakage caused by the finite length of the basic function that impacts the time and frequency resolutions. This paper proposes a new time-frequency brain functional connectivity analysis framework to track the non-stationary association of two EEG signals based on a Revised Hilbert-Huang Transform (RHHT). The framework can estimate the cross-spectrum of decomposed components of EEG, followed by a surrogate significance test. The results of two simulation examples demonstrate that, within a certain statistical confidence level, the proposed framework outperforms the wavelet-based method in terms of accuracy and time-frequency resolution. A case study on classifying epileptic patients and healthy controls using interictal seizure-free EEG data is also presented. The result suggests that the proposed method has the potential to better differentiate these two groups benefiting from the enhanced measure of dynamic time-frequency association.Item Open Access Using interictal seizure-free EEG data to recognise patients with epilepsy based on machine learning of brain functional connectivity(Elsevier, 2021-03-12) Cao, Jun; Grajcar, Kacper; Shan, Xiaocai; Zhao, Yifan; Zou, Jiaru; Chen, Liangyu; Li, Zhiqing; Grunewald, Richard; Zis, Panagiotis; De Marco, Matteo; Unwin, Zoe; Blackburn, Daniel; Sarrigiannis, Ptolemaios G.Most seizures in adults with epilepsy occur rather infrequently and as a result, the interictal EEG plays a crucial role in the diagnosis and classification of epilepsy. However, empirical interpretation, of a first EEG in adult patients, has a very low sensitivity ranging between 29-55%. Useful EEG information remains buried within the signals in seizure-free EEG epochs, far beyond the observational capabilities of any specialised physician in this field. Unlike most of the existing works focusing on either seizure data or single-variate method, we introduce a multi-variate method to characterise sensor level brain functional connectivity from interictal EEG data to identify patients with generalised epilepsy. A total of 9 connectivity features based on 5 different measures in time, frequency and time frequency domains have been tested. The solution has been validated by the K-Nearest Neighbour algorithm, classifying an epilepsy group (EG) vs healthy controls (HC) and subsequently with another cohort of patients characterised by non-epileptic attacks (NEAD), a psychogenic type of disorder. A high classification accuracy (97%) was achieved for EG vs HC while revealing significant spatio temporal deficits in the frontocentral areas in the beta frequency band. For EG vs NEAD, the classification accuracy was only about 73%, which might be a reflection of the well-described coexistence of NEAD with epileptic attacks. Our work demonstrates that seizure-free interictal EEG data can be used to accurately classify patients with generalised epilepsy from HC and that more systematic work is required in this direction aiming to produce a clinically useful diagnostic method.