Santhanakrishnan, Mani SekaranTilford, TimBailey, Chris2022-08-052022-08-052021-07-16Santhanakrishnan MS, Tilford T, Bailey C. (2022) Multi-objective NSGA-II based shape optimisation of the cross-sectional shape of passively cooled heat sinks. International Journal of Numerical Methods for Heat and Fluid Flow, Volume 32, Issue 3, July 2022, pp. 1025-10450961-5539https://doi.org/10.1108/HFF-10-2020-0656https://dspace.lib.cranfield.ac.uk/handle/1826/18284Purpose The purpose of the study is to optimise the cross-sectional shape of passively cooled horizontally mounted pin-fin heat sink for higher cooling performance and lower material usage. Design/methodology/approach Multi-objective shape optimisation technique is used to design the heat sink fins. Non-dominated sorting genetic algorithm (NSGA-II) is combined with a geometric module to develop the shape optimiser. High-fidelity computational fluid dynamics (CFD) is used to evaluate the design objectives. Separate optimisations are carried out to design the shape of bottom row fins and middle row fins of a pin-fin heat sink. Finally, a computational validation was conducted by generating a three-dimensional pin-fin heat sink using optimised fin cross sections and comparing its performance against the circular pin-fin heat sink with the same inter-fin spacing value. Findings Heat sink with optimised fin cross sections has 1.6% higher cooling effectiveness than circular pin-fin heat sink of same material volume, and has 10.3% higher cooling effectiveness than the pin-fin heat sink of same characteristics fin dimension. The special geometric features of optimised fins that resulted in superior performance are highlighted. Further, Pareto-optimal fronts for this multi-objective optimisation problem are obtained for different fin design scenarios. Originality/value For the first time, passively cooled heat sink’s cross-sectional shapes are optimised for different spatial arrangements, using NSGA-II-based shape optimiser, which makes use of CFD solver to evaluate the design objectives. The optimised, high-performance shapes will find direct application to cool power electronic equipment.enAttribution-NonCommercial 4.0 Internationalhttp://creativecommons.org/licenses/by-nc/4.0/Natural convectionShape optimisationGenetic AlgorithmHeat sink designCFDMulti-objective NSGA-II based shape optimisation of the cross-sectional shape of passively cooled heat sinksArticle