Yao, YuechaoZhang, QiLiu, PengYu, LiangHuang, LinZeng, Shao-ZhongLiu, LijiaZenga, XierongZou, Jizhao2020-01-222020-01-222018-01-09Yao Y, Zhang Q, Liu P, (2018) Facile synthesis of high-surface-area nanoporous carbon from biomass resources and its application in supercapacitors, RSC Advances, Volume 8, Issue 4, 2019, pp. 1857-18652046-2069https://doi.org/10.1039/C7RA12525Ahttps://dspace.lib.cranfield.ac.uk/handle/1826/14991It is critical for nanoporous carbons to have a large surface area, and low cost and be readily available for challenging energy and environmental issues. The pursuit of all three characteristics, particularly large surface area, is a formidable challenge because traditional methods to produce porous carbon materials with a high surface area are complicated and expensive, frequently resulting in pollution (commonly from the activation process). Here we report a facile method to synthesize nanoporous carbon materials with a high surface area of up to 1234 m2 g−1 and an average pore diameter of 0.88 nm through a simple carbonization procedure with carefully selected carbon precursors (biomass material) and carbonization conditions. It is the high surface area that leads to a high capacitance (up to 213 F g−1 at 0.1 A g−1) and a stable cycle performance (6.6% loss over 12 000 cycles) as shown in a three-electrode cell. Furthermore, the high capacitance (107 F g−1 at 0.1 A g−1) can be obtained in a supercapacitor device. This facile approach may open a door for the preparation of high surface area porous carbons for energy storage.enAttribution 3.0 Internationalhttp://creativecommons.org/licenses/by/3.0/Facile synthesis of high-surface-area nanoporous carbon from biomass resources and its application in supercapacitorsArticle