Ji, XiaodongZhao, XinZhang, ZixinSi, YunfaQian, WeiFu, HuaqiangChen, ZiboWang, ZheJin, ZhugenHe, Daping2023-03-062023-03-062023-02-22Ji X, Zhao X, Zhang Z, et al., (2023) Scalable fabrication of graphene-assembled multifunctional electrode with efficient electrochemical detection of dopamine and glucose, Nano Research, Volume 16, Issue 5, May 2023, pp. 6361-63681998-0124https://doi.org/10.1007/s12274-023-5459-7https://dspace.lib.cranfield.ac.uk/handle/1826/19263Conventional glassy carbon electrodes (GCE) cannot meet the requirements of future electrodes for wider use due to low conductivity, high cost, non-portability, and lack of flexibility. Therefore, cost-effective and wearable electrode enabling rapid and versatile molecule detection is becoming important, especially with the ever-increasing demand for health monitoring and point-of-care diagnosis. Graphene is considered as an ideal electrode due to its excellent physicochemical properties. Here, we prepare graphene film with ultra-high conductivity and customize the 3-electrode system via a facile and highly controllable laser engraving approach. Benefiting from the ultra-high conductivity (5.65 × 105 Sm−1), the 3-electrode system can be used as multifunctional electrode for direct detection of dopamine (DA) and enzyme-based detection of glucose without further metal deposition. The dynamic ranges from 1–200 µM to 0.5–8.0 mM were observed for DA and glucose, respectively, with a limit of detection (LOD) of 0.6 µM and 0.41 mM. Overall, the excellent target detection capability caused by the ultra-high conductivity and ease modification of graphene films, together with their superb mechanical properties and ease of mass-produced, provides clear potential not only for replacing GCE for various electrochemical studies but also for the development of portable and highperformance electrochemical wearable medical devices.engraphene filmultra-high conductivitymultifunctional electrodepoint-of-care diagnosiswearable medical devicesScalable fabrication of graphene-assembled multifunctional electrode with efficient electrochemical detection of dopamine and glucoseArticle1998-0000