Breckon, Toby P.Armitage, CarolMouton, Andre2014-06-042014-06-042014-03http://dspace.lib.cranfield.ac.uk/handle/1826/8501This work considers novel image-processing and computer-vision techniques to advance the automated analysis of low-resolution, complex 3D volumetric Computed Tomography (CT) imagery obtained in the aviation-security-screening domain. Novel research is conducted in three key areas: image quality improvement, segmentation and classification. A sinogram-completion Metal Artefact Reduction (MAR) technique is presented. The presence of multiple metal objects in the scanning Field of View (FoV) is accounted for via a distance-driven weighting scheme. The technique is shown to perform comparably to the state-of-the-art medical MAR techniques in a quantitative and qualitative comparative evaluation. A materials-based technique is proposed for the segmentation of unknown objects from low-resolution, cluttered volumetric baggage-CT data. Initial coarse segmentations, generated using dual-energy techniques, are refined by partitioning at automatically-detected regions. Partitioning is guided by a novel random-forestbased quality metric (trained to recognise high-quality, single-object segments). A second segmentation-quality measure is presented for quantifying the quality of full segmentations. In a comparative evaluation, the proposed method is shown to produce similar-quality segmentations to the state-of-the-art at reduced processing times. A codebook model constructed using an Extremely Randomised Clustering (ERC) forest for feature encoding, a dense-feature-sampling strategy and a Support Vector Machine (SVM) classifier is presented. The model is shown to offer improvements in accuracy over the state-of-the-art 3D visual-cortex model at reduced processing times, particularly in the presence of noise and artefacts. The overall contribution of this work is a novel, fully-automated and effcient framework for the classification of objects in cluttered 3D baggage-CT imagery. It extends the current state-of-the-art by improving classification performance in the presence of noise and artefacts; by automating the previously-manual isolation of objects and by decreasing processing times by several orders of magnitude.en© Cranfield University, 2014. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.On artefact reduction, segmentation and classification of 3D computed tomography imagery in baggage security screeningThesis or dissertation