Zai, Behzad AhmedKhan, Muhammad A.Khan, Kamran AhmedMansoor, Asif2020-01-132020-01-132019-12-06Behzad AZ, Muhammad AK, Kamran AK, Asif M. (2019) A novel approach for damage quantification using the dynamic response of a metallic beam under thermo-mechanical loads. Journal of Sound and Vibration, Volume 469, March 2020, Article number 1151340022-460Xhttps://doi.org/10.1016/j.jsv.2019.115134https://dspace.lib.cranfield.ac.uk/handle/1826/14910This paper investigates the interdependencies of crack depth and crack location on the dynamic response of a cantilever beam under thermo-mechanical loads. Temperature can influence the stiffness of the structure, thus, the change in stiffness can lead to variation in frequency, damping and amplitude response. These variations are used as key parameters to quantify damage of Aluminum 2024 specimen under thermo-mechanical loads. Experiments are performed on cantilever beams at non-heating (room temperature) and elevated temperature, i.e., 50 °C, 100 °C, 150 °C and 200 °C. This study considers a cantilever beam having various initially seeded crack depth and locations. The analytical, numerical and experimental results for all configurations are found in good agreement. Dynamic response formulation is presented experimentally on beam for the first time under thermo-mechanical loads. Using available experimental data, a novel tool is formulated for in-situ damage assessment in the metallic structures. This tool can quantify and locate damage using the dynamic response and temperature including the diagnosis of subsurface cracking. The obtained results demonstrate the possibility to diagnose the crack growth at any instant within the operational condition under thermo-mechanical loads.enAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Crack depthDynamic responseThermo-mechanical loadsCrack prorogationCrack locationA novel approach for damage quantification using the dynamic response of a metallic beam under thermo-mechanical loadsArticle25723405