CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alam, Sahib"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Water availability affects extracellular hydrolytic enzyme production by Aspergillus flavus and Aspergillus parasiticus
    (Wageningen Academic Publishers, 2009-08-31T00:00:00Z) Alam, Sahib; Shah, Hamid Ullah; Magan, Naresh
    The objectives of this study were to examine the effect of different water activities (a(w); 0.99, 0.96 and 0.94) and time (up to 120 h) on quantitative and specific enzyme production during germination and initial growth of Aspergillus flavus and A. parasiticus strains at 25 degrees C. This is an important early indicator of potential for aflatoxin production under conducive conditions. Qualitative API ZYM generic enzyme strips were used to identify key hydrolytic enzymes produced. Subsequently, the temporal effects of a(w) on the total/specific activity of the key 4-5 hydrolytic enzymes were determined using 4-nitrophenyl substrates in a 96-well microtitre plate assay. The main enzymes produced by germinating conidia of A. flavus were esterase, lipase, acid phosphatase, beta-glucosidase and N-acetyl-beta-D-glucosaminidase, while for A. parasiticus these were alkaline phosphatase, lipase, acid phosphatase and beta- fucosidase for both total (mu mol 4-nitrophenol/min/g) and specific activity (nmol beta-nitrophenol/min/mu g protein). There were significant increases in the specific activity of all these enzymes of germinating spores of A. flavus (0-120 h) except for beta-glucosidase which was maximum at 72 h. The total/ specific activities of the enzymes produced by A. flavus were maximum at 0.99 a (w) with the exception of acid phosphatase and N-acetyl-beta-D-glucosaminidase at 0.94 a(w) For A. parasiticus, maximum total activity occurred at 0.99 aw for fucosidase activity, while specific activity was found to be higher at lower a (w) levels. These enzymes are important in early colonisation of food matrices by these species and single factors (a(w) time) and two-way interactions were all statistically significant for the enzymes assayed for both species. These enzymes could be used as an early and rapid indicator of the activity of Aspergillus section flavi species and suggests that rapid infection may occur over a wide range of a(w) conditions.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback