Browsing by Author "Ali, Wajid"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Bioaerosols emission characteristics from wastewater treatment aeration tanks and associated health risk exposure assessment during autumn and winter(Elsevier, 2022-08-22) Zhao, Xiao-yan; An, Dong-zi; Liu, Man-li; Ma, Jia-xin; Ali, Wajid; Zhu, Hao; Li, Ming; Ai, Xiao-jun; Nasir, Zaheer Ahmad; Garcia Alcega, Sonia; Coulon, Frederic; Yan, ChengAeration tanks from activated sludge wastewater treatment plants (WWTPs) can release a large amount of bioaerosols that can pose health risks. However, risk characterization of bioaerosols emissions form wastewater treatment plants is currently not systematically carried out and still in its infancy. Therefore, this study investigated emission characteristic of two indicator model bioaerosols Staphylococcus aureus and Escherichia coli, emitted from aeration tanks of a municipal WWTP. Monte Carlo simulation was then used to quantitatively assess microbial risk posed by different aeration modes under optimistic and conservative estimates. Further to this, two different exposure scenarios were considered during 3 days sampling campaign in autumn and winter. Results showed that the bioaerosol concentration from microporous aeration tank (20–262 CFU m−3) was one order of magnitude lower than rotating disc aeration tank. Average aerosolization rate was 7.5 times higher with mechanical aeration mode. Health risks of exposed populations were 0.4 and 9.6 times higher in winter than in autumn for E. coli and S. aureus bioaerosol, respectively. Health risks of staff members were 10 times higher than academic visitors. Interesting results were observed for academic visitors without personal protective equipment (PPE) respectively exposed to S. aureus and E. coli bioaerosol in autumn and winter: while the derived infection risk met the United States Environmental Protection Agency (U.S. EPA) benchmark under optimistic estimation, the disease risk burden was over the World Health Organization (WHO) benchmark under conservative estimation. These revealed that only satisfying one of the two benchmarks didn't mean absolute acceptable health risk. This study could facilitate the development of better understanding of bioaerosol quantitative assessment of risk characterizations and corresponding appropriate risk control strategies for wastewater utilities.Item Open Access Quantitative health risk assessment of microbial hazards from water sources for community and self-supply drinking water systems(Elsevier, 2023-12-26) Yan, Cheng; Wan, Wei-di; Wang, Rui-ning; Lai, Tian-nuo; Ali, Wajid; He, Shan-shan; Liu, Sai; Nasir, Zaheer Ahmad; Coulon, FredericIn low and medium income countries (LMIC) drinking water sources (wells and boreholes) often contain a high number of pathogenic microorganisms, that can pose significant human and environmental health risks. In this study, a quantitative microbial risk assessment approach based on existing literature was conducted to evaluate and compare the quantitative health risks associated with different age groups using various drinking water supply systems. Results showed that both community-supply and self-supply modes exhibit similar levels of risk. However, the self-supply water source consistently showed higher risks compared to the community-supply one. Borehole water was found to be a more suitable option than well water, consistently showing between 5 and 8 lower health risks for E. coli and fecal coliform levels, respectively. The sensitivity analysis further showed the importance of prioritizing the reduction of E. coli concentration in well water and fecal coliform concentration in borehole water. This study offers a fresh perception on quantifying the impact of exposure concentration and age groups, shedding light on how they affect environmental health risks. These findings provide valuable insights for stakeholders involved in the management and protection of water sources.Item Open Access Quantitative SARS-CoV-2 exposure assessment for workers in wastewater treatment plants using Monte-Carlo simulation(Elsevier, 2023-11-16) Yan, Cheng; Hu, Yi-ning; Gui, Zi-cheng; Lai, Tian-nuo; Ali, Wajid; Wan, Nian-hong; He, Shan-shan; Liu, Sai; Li, Xiang; Jin, Ting-xu; Nasir, Zaheer Ahmad; Garcia Alcega, Sonia; Coulon, FredericSeveral studies on COVID-19 pandemic have shown that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originating from human stool are detected in raw sewage for several days, leading to potential health risks for workers due to the production of bioaerosols and droplets during wastewater treatment process. In this study, data of SARS-CoV-2 concentrations in wastewater were gathered from literatures, and a quantitative microbial risk assessment with Monte Carlo simulation was used to estimate the daily probability of infection risk through exposure to viable infectious viral airborne particles of the workers during four seasons and under six environmental conditions. Inhalation of bioaerosols and direct ingestion of wastewater droplets were selected as exposure pathways. Spearman rank correlation coefficients were used for sensitivity analysis to identify the variables with the greatest influence on the infection risk probability. It was found that the daily probability of infection risk decreased with temperature (T) and relative humidity (RH) increase. The probability of direct droplet ingestion exposure pathway was higher than that of the bioaerosol inhalation pathway. The sensitivity analysis indicated that the most sensitive variable for both exposure pathways was the concentration of SARS-CoV-2 in stool. So, appropriate aeration systems, covering facilities, and effective ventilation are suggested to implement in wastewater treatment plants (WWTPs) to reduce emission concentration. Further to this, the exposure time (t) had a larger variance contribution than T and RH for the bioaerosol inhalation pathway. Implementing measures such as adding more work shifts, mandating personal protective equipment for all workers, and implementing coverage for treatment processes can significantly reduce the risk of infection among workers at WWTPs. These measures are particularly effective during environmental conditions with low temperatures and humidity levels.