Browsing by Author "Alwi, H."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Flight evaluation of an LPV sliding mode observer for sensor FTC(IEEE, 2021-07-29) Chen, Lejun; Alwi, H.; Edwards, C.; Sato, M.This brief develops a sliding mode sensor fault-tolerant control scheme for a class of linear parameter varying (LPV) systems. It incorporates a sliding mode observer that reconstructs the unknown sensor faults based on only the system inputs and outputs. The reconstructed sensor faults are used to compensate for the corrupted sensor measurements before they are used in the feedback controller. Provided accurate fault estimates can be computed; near nominal control performance can be retained without any controller reconfiguration. Furthermore, the closed-loop stability of the fault-tolerant control (FTC) scheme, involving both a sliding mode controller and a sliding mode observer, is rigorously analyzed. The proposed scheme is validated using the Japan Aerospace Exploration Agency's Multipurpose Aviation Laboratory (MuPAL-α) research aircraft. These flight tests represent the first validation tests of a sliding mode sensor FTC scheme on a full-scale aircraft.Item Open Access Sliding mode observers for a class of LPV systems(Wiley, 2020-03-04) Chen, Lejun; Edwards, C.; Alwi, H.In this paper, a new framework for the synthesis of a class of sliding mode observers for affine linear parameter varying (LPV) systems is proposed. The sliding mode observer is synthesized by selecting the design freedom via LMIs. Posing the problem from a small gain perspective allows existing numerical techniques from the literature to be used for the purpose of synthesizing the observer gains. In particular, the framework allows affine parameterdependent Lyapunov functions to be considered for analyzing the stability of the state estimation error dynamics, to help reduce design conservatism. Initially a variable structure observer formulation is proposed, but by imposing further constraints on the LMIs, a stable sliding mode is introduced, which can force and maintain the output estimation error to be zero in finite time. The efficacy of the scheme is demonstrated using an LPV model of the short period dynamics of an aircraft and demonstrates simultaneous asymptotic estimation of the states and disturbances.