Browsing by Author "Balampanis, Dimitris E."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access An assessment of different extraction and quantification methods of penta- and hexa-chlorobenzene from SRF fly-ash(Elsevier, 2017-01-26) Balampanis, Dimitris E.; Coulon, Frederic; Simms, Nigel; Longhurst, Philip J.; Pollard, Simon J. T.; Fenech, Cecilia; Villa, RaffaellaHighly chlorinated benzenes, produced in the presence of organic matter and chlorine, are considered PCDD/Fs precursors, and are used as cost and time convenient substitute indicators for the indirect measurement of the latter. In this study penta- and hexa-chlorobenzene are quantified for the determination of the organochloride load of fly ash from solid recovered fuel incineration. Some of the chlorobenzenes are formed under ‘de novo’ conditions, through heterogeneous (ash particles/flue gases) reactions and are therefore deeply incorporated within fly ash. Accelerated solvent extraction (ASE) and ultrasonic solvent extraction (USE), along with the equivalent clean-up methods suggested by literature were compared to traditional Soxhlet. The extraction efficiencies achieved were 83 ± 7.5% for Soxhlet, 111 ± 19% for PFE, and 67 ± 17% for ultrasonication. Soxhlet extraction and clean-up through a multilayer silica gel column gave more precise results compared to the other sample preparation methods. Furthermore, performance comparison of gas chromatography fitted with either a mass spectrometer operated in single ion monitoring mode (GC-MS-SIM), or electron capture detector (GC- ECD) highlighted that ECD can be used for measuring chlorobenzenes traces down to 0.21 ng g−1, when the equivalent LOQ for MS-SIM was 3.26 ng g−1. The results further suggest that ECD can provide better peak integration than MS-SIM in the detection of chlorobenzenes in fly ash extracts, due to the detector's sensitivity to halogenated compounds.Item Open Access Comparative study on the combustion and gasification of solid recovered fuels. Emphasis on residues characterisation and chlorine partitioning(Cranfield University, 2009-10) Balampanis, Dimitris E.; Villa, RaffaellaThermal treatment is recognised as a valid option within the waste management hierarchy for the recovery of the energy content of waste. Recent developments in the field are signposted from emergent technologies and the standardisation of solid recovered fuels. This work comparatively examines the fluidized bed combustion and gasification of a novel material; East London’s solid recovered fuel. Emphasis is given on the characterisation of the solid residues produced from the two thermal treatment techniques and chlorine partitioning, in particular. Chlorine mass balances are studied under steady state conditions for combustion and gasification. Furthermore, trace metals content, chlorobenzenes, major elements, crystalline structures, and leaching behaviours are compared in the two residues types. For the characterisation of these residues a series of analytical methods have been applied and compared for their efficiencies. Results indicate that gasification produces 5-6 times less HCI than combustion. Furthermore, gasification residues retain higher amounts of CI and in less water soluble forms. However, gasification residues have 3-8 times higher organochlorides load, expressed chlorobenzenes. This work generates novel data on the comparative characterisation of waste thermal treatment residues. These data contribute towards the technical confidence for further utilisation of solid recovered fuels, and the knowledge over the residues’ properties.Item Open Access Residues characterisation from the fluidised bed combustion of East London's solid recovered fuel(Elsevier Science B.V., Amsterdam., 2010-07-31T00:00:00Z) Balampanis, Dimitris E.; Pollard, Simon J. T.; Simms, Nigel J.; Longhurst, Philip J.; Coulon, Frederic; Villa, RaffaellaWaste thermal treatment in Europe is moving towards the utilisation of the combustible output of mechanical, biological treatment (MBT) plants. The standardisation of solid recovered fuels (SRF) is expected to support this trend and increase the amount of the generated combustion residues. In this work, the residues and especially the fly ashes from the fluidised bed combustion (FBC) of East London’s NCV 3, Cl 2, and Hg 1 class SRF, are characterised. The following toxicity indicators have been studied: leachable chlorine, organochlorides expressed as pentachlorobenzene and hexachlorobenzene, and the heavy metals Cu, Cr, Cd, Zn, Ni, and Pb. Furthermore the mineralogical pattern of the ashes has been studied by means of XRD and SEM–EDS. The results suggest that these SRF derived ashes have significantly lower quantities of Cu, Cd, Pb, Zn, leachable Cl, and organochlorides when compared to other literature values from traditional waste thermal treatment applications. This fact highlights the importance of modern separation technologies employed in MBT plants for the removal of components rich in metals and chlorine from the combustible output fraction of SRF resulting to less hazardous residues.(C) 2010 Elsevier Ltd. All rights reser