Browsing by Author "Balos, Sebastian"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access An experimental study on lap joining of multiple sheets of aluminium alloy (AA 5754) using friction stir spot welding(Springer, 2020-04-08) Zlatanovic, Danka Labus; Balos, Sebastian; Bergmann, Jean Pierre; Köhler, Tobias; Grätzel, Michael; Sidjanin, Leposava; Goel, SauravFriction stir spot welding (FSSW) process is widely used in the automobile industry for a range of applications such as battery components, standard wire connectors and terminals. This manuscript addresses two grand challenges in the arena of FSSW, hitherto, unaddressed in the extant literature: (i) lap joining of thin sheets (0.3 mm thickness) of AA 5754 alloy and (ii) lap joining of more than two sheets using FSSW. To accomplish this task, a novel pinless convex shaped tool was designed to alter the stress state while gradually advancing the tool which led to achieving stress state necessary for obtaining defect free lap joints. The weld joints were inspected by optical microscopy, SEM imaging and analysed by nanoindentation tests and Vickers microindentation tests for assessment of the quality of the weld interface (WI). Process parameters of FSSW such as torque on the tool and axially applied load were used to analytically obtain the average local measure of peak normal and axial stresses as well as the coefficient of friction in the contact zone. In samples welded at low rotational speeds, strain-hardening mechanism was seen dominating in contrast to samples welded at higher rotational speeds, which showed thermal softening. As a direct consequence of this, the samples welded at low rotational speeds showed much higher hardness at the weld surface than the samples welded at higher speeds. A strong transition of strain hardening to thermal softening was noticeable beyond an applied strain rate of 400 s-1.Item Open Access In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot welding(Elsevier, 2021-03-10) Zlatanovic, Danka Labus; Balos, Sebastian; Bergmann, Jean Pierre; Rasche, Stefan; Zavašnik, Janez; Panchal, Vishal; Sidjanin, Leposava; Goel, SauravFriction stir spot welding (FSSW) is a solid-state welding process, wherein the properties of a weld joint are influenced by the state of friction and localised thermodynamic conditions at the tool-workpiece interface. An issue well-known about FSSW joints is their lack of reliability since they abruptly delaminate at the weld-faying interface (WFI). This study explores the origins of the delamination of multiple lap welded aluminium alloy (AA 5754-H111) sheets joined by FSSW at different rotational speeds typically used in industry. Experimental techniques such as the small punch test (SPT), Vickers hardness test, Scanning Electron Microscopy (SEM), Scanning Acoustic Microscope (SAM), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX) and Frequency-Modulated Kelvin Probe Force Microscopy (FM-KPFM) were employed. The experimental results revealed that a complex interplay of stress-assisted metallurgical transformations at the intersection of WFI and the recrystallised stir zone (RSZ) can trigger dynamic precipitation leading to the formation of Al3Mg2 intermetallic phase, while metallic oxides and nanopits remain entrapped in the WFI. These metallurgical transformations surrounded by pits, precipitates and oxides induces process instability which in turn paves way for fast fracture to become responsible for delamination.Item Open Access Influence of tool geometry and process parameters on the properties of friction stir spot welded multiple (AA 5754 H111) aluminium sheets(MDPI, 2021-03-01) Zlatanovic, Danka Labus; Balos, Sebastian; Bergmann, Jean Pierre; Rasche, Stefan; Pecanac, Milan; Goel, SauravFriction stir spot welding is an emerging spot-welding technology that offers opportunities for joining a wide range of materials with minimum energy consumption. To increase productivity, the present work addresses production challenges and aims to find solutions for the lap-welding of multiple ultrathin sheets with maximum productivity. Two convex tools with different edge radii were used to weld four ultrathin sheets of AA5754-H111 alloy each with 0.3 mm thickness. To understand the influence of tool geometries and process parameters, coefficient of friction (CoF), microstructure and mechanical properties obtained with the Vickers microhardness test and the small punch test were analysed. A scanning acoustic microscope was used to assess weld quality. It was found that the increase of tool radius from 15 to 22.5 mm reduced the dwell time by a factor of three. Samples welded with a specific tool were seen to have no delamination and improved mechanical properties due to longer stirring time. The rotational speed was found to be the most influential parameter in governing the weld shape, CoF, microstructure, microhardness and weld efficiency. Low rotational speeds caused a 14.4% and 12.8% improvement in joint efficiency compared to high rotational speeds for both tools used in this investigationItem Open Access Powder bed fusion additive manufacturing using critical raw materials: a review(MDPI, 2021-02-14) Popov, Vladimir V.; Grilli, Maria Luisa; Koptyug, Andrey; Jaworska, Lucyna; Katz-Demyanetz, Alexander; Klobčar, Damjan; Balos, Sebastian; Postolnyi, Bogdan O.; Goel, SauravThe term “critical raw materials” (CRMs) refers to various metals and nonmetals that are crucial to Europe’s economic progress. Modern technologies enabling effective use and recyclability of CRMs are in critical demand for the EU industries. The use of CRMs, especially in the fields of biomedicine, aerospace, electric vehicles, and energy applications, is almost irreplaceable. Additive manufacturing (also referred to as 3D printing) is one of the key enabling technologies in the field of manufacturing which underpins the Fourth Industrial Revolution. 3D printing not only suppresses waste but also provides an efficient buy-to-fly ratio and possesses the potential to entirely change supply and distribution chains, significantly reducing costs and revolutionizing all logistics. This review provides comprehensive new insights into CRM-containing materials processed by modern additive manufacturing techniques and outlines the potential for increasing the efficiency of CRMs utilization and reducing the dependence on CRMs through wider industrial incorporation of AM and specifics of powder bed AM methods making them prime candidates for such developments.Item Open Access Suppressing the use of critical raw materials in joining of AISI 304 stainless steel using activated tungsten inert gas welding(MDPI, 2019-11-04) Balos, Sebastian; Dramicanin, Miroslav; Janjatovic, Petar; Zabunov, Ivan; Pilic, Branka; Goel, Saurav; Szutkowska, MagdalenaThe aim of this study was to study the influence of TiO2 coating for its efficacy during the activated-tungsten inert gas (TIG) welding and to suppress the use of consumables that are rich in critical raw materials. Post-welding penetration depth, particle size distribution, microstructure, and microhardness of welded samples were assessed. Based on these results, it was found that there is no direct correlation between the weld metal surface area and the coating. The particle size in the coating, although, seemed to have played an important role, e.g., nanoparticles resulted in an increased penetration depth and depth/width (D/W) ratio as opposed to the submicron-sized particles. The most optimal welding condition resulted when a mixture of submicron-sized and nanometric-sized particles were used. It was demonstrated by the Zeta analyser results that the micron particles rub the nanoparticles due to mechanical friction resulting in smaller oxide particle formation in the coating. Finally, the presence of Marangoni convection in TIG and reversed Marangoni convection in the activated TIG (A-TIG) process were proven by means of the microstructure analysis and measurement, which were found to be positively correlated.