CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Barr, Hugh"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Lymph node pathology using optical spectroscopy in cancer diagnostics
    (2008-12-31T00:00:00Z) Isabelle, M.; Stone, N.; Barr, Hugh; Vipond, M.; Shepherd, N.; Rogers, Keith
    Raman and infrared spectroscopy are optical spectroscopic techniques that use light scattering (Raman) and light absorption (infrared) to probe the vibrational energy levels of molecules in tissue samples. Using these techniques, one can gain an insight into the biochemical composition of cells and tissues by looking at the spectra produced and comparing them with spectra obtained from standards such as proteins, nucleic acids, lipids and carbohydrates. As a result of optical spectroscopy being able to measure these biochemical changes, diagnosis of cancer could take place faster than current diagnostic methods, assisting and offering pathologists and cytologists a novel technology in cancer screening and diagnosis. The purpose of this study is to use both spectroscopic techniques, in combination with multivariate statistical analysis tools, to analyze some of the major biochemical and morphological changes taking place during carcinogenesis and metastasis in lymph nodes and to develop a predictive model to correctly differentiate cancerous from benign lymph nodes taken from oesophageal cancer patients. The results of this study showed that Raman and infrared spectroscopy managed to correctly differentiate between cancerous and benign oesophageal lymph nodes with a training performance greater than 94% using principal component analysis (PCA)fed linear discriminant analysis (LDA). Cancerous nodes had higher nucleic acid but lower lipid and carbohydrate content compared to benign nodes which is indicative of increased cell proliferation and loss of differentiation. With better understanding of the molecular mechanisms of carcinogenesis and metastasis together with use of multivariate statistical analysis tools, these spectroscopic studies will provide a platform for future development of real-time (in surgery) non-invasive diagnostic tools in medical research.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Use of volatile fingerprints for rapid screening of antifungal agents for efficacy against dermatophyte Trichophyton species
    (Elsevier Science B.V., Amsterdam., 2010-04-29T00:00:00Z) Naraghi, Kamran; Sahgal, Natasha; Adriaans, Beverley; Barr, Hugh; Magan, Naresh
    The potential of using an electronic nose (E-nose) as a rapid technique for screening the responses of dermatophytes to antifungal agents was studied. In vitro, the 50% and 90% effective concentration (EC) values of five antifungal agents including fungicides and antioxidant mixtures against Trichophyton rubrum and Trichophyton mentagrophytes were obtained by mycelial growth assays. The qualitative volatile production patterns of the growth responses of these fungi to the EC values incorporated into solid media were analysed after 96-120h incubation at 25°C using headspace analyses using five replicates per treatment. Overall, results, using principal components analysis and cluster analysis, demonstrated that it was possible to differentiate between various treatments within 96-120h of growth. The EC50 values were discriminated from the controls while the EC90 concentration treatments were often grouped with the agar blanks because of very slow growth. This study showed that potential exists for using qualitative volatile patterns as a rapid screening method for antifungal agents against micro-organisms. This approach could significantly improve and facilitate the monitoring of antimicrobial drug activities and infection control programmes and perhaps also for monitoring of drug resistance buildup in microbial populations

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback