Browsing by Author "Belen Saglam, Rahime"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Privacy concerns in chatbot interactions: when to trust and when to worry(Springer, 2021-07-03) Belen Saglam, Rahime; Nurse, Jason R. C.; Hodges, DuncanThrough advances in their conversational abilities, chatbots have started to request and process an increasing variety of sensitive personal information. The accurate disclosure of sensitive information is essential where it is used to provide advice and support to users in the healthcare and finance sectors. In this study, we explore users’ concerns regarding factors associated with the use of sensitive data by chatbot providers. We surveyed a representative sample of 491 British citizens. Our results show that the user concerns focus on deleting personal information and concerns about their data’s inappropriate use. We also identified that individuals were concerned about losing control over their data after a conversation with conversational agents. We found no effect from a user’s gender or education but did find an effect from the user’s age, with those over 45 being more concerned than those under 45. We also considered the factors that engender trust in a chatbot. Our respondents’ primary focus was on the chatbot’s technical elements, with factors such as the response quality being identified as the most critical factor. We again found no effect from the user’s gender or education level; however, when we considered some social factors (e.g. avatars or perceived ‘friendliness’), we found those under 45 years old rated these as more important than those over 45. The paper concludes with a discussion of these results within the context of designing inclusive, digital systems that support a wide range of users.Item Open Access Sharing secrets with agents: improving sensitive disclosures using chatbots(Springer, 2021-07-03) Buckley, Oliver; Nurse, Jason R. C.; Wyer, Natalie; Dawes, Helen; Hodges, Duncan; Earl, Sally; Belen Saglam, RahimeThere is an increasing shift towards the use of conversational agents, or chatbots, thanks to their inclusion in consumer hardware (e.g. Alexa, Siri and Google Assistant) and the growing number of essential services moving online. A chatbot allows an organisation to deal with a large volume of user queries with minimal overheads, which in turn allows human operators to deal with more complex issues. In this paper we present our work on maximising responsible, sensitive disclosures to chatbots. The paper focuses on two key studies, the first of which surveyed participants to establish the relative sensitivity of a range of disclosures. From this, we found that participants were equally comfortable making financial disclosures to a chatbot as to a human. The second study looked to support the dynamic personalisation of the chatbot in order to improve the disclosures. This was achieved by exploiting behavioural biometrics (keystroke and mouse dynamics) to identify demographic information about anonymous users. The research highlighted that a fusion approach, combining both keyboard and mouse dynamics, was the most reliable predictor of these biographic characteristics.