Browsing by Author "Best, D."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Development of a staged anaerobic pond for methane recovery from domestic wastewater(Elsevier, 2018-08-08) Cruddas, Peter; McAdam, Ewan; Asproulis, Nikolaos; Antoniadis, Antonis F.; Ansari, Irfan; Best, D.; Jefferson, Bruce; Cartmell, Elise; Collins, G.; Porca, E.; Peña-Varón, M. R.Since their inception in larger pond systems, the focus of anaerobic ponds has shifted from solids removal to optimising biogas production and reducing physical footprint to minimise land requirements. In this study, a horizontally baffled (HBAP) and vertically baffled (VBAP) anaerobic pond were compared. Distinct differences in the removal efficiency of COD fractions were observed, with particulate COD removal of 78% and 32%, and soluble COD removal of −26% and 19% in the HBAP and VBAP, respectively. A staged pond (SAP) was constructed through an HBAP placed upstream of a VBAP, with an additional HBAP used as a control (CAP). The SAP demonstrated superior biogas recovery potential over the control: methane production by the conclusion of the study was 6.09 and 9.04 LCH4 m−3 wastewater treated for the CAP and SAP, respectively. Methanogenic activity in the ponds was higher closer to the outlet, and hydrogenotrophic methanogenesis dominated over acetoclastic pathways.Item Open Access Diagnosis of an anaerobic pond treating temperate domestic wastewater: An alternative sludge strategy for small works(Elsevier, 2014-01-15) Cruddas, Peter; Wang, K.; Best, D.; Jefferson, Bruce; Cartmell, Elise; Parker, Alison; McAdam, Ewan J.An anaerobic pond (AP) for treatment of temperate domestic wastewater has been studied as a small works sludge management strategy to challenge existing practice which comprises solids separation followed by open sludge storage, for up to 90 days. During the study, effluent temperature ranged between 0.1 °C and 21.1 °C. Soluble COD production was noted in the AP at effluent temperatures typically greater than 10 °C and was coincident with an increase in effluent volatile fatty acids (VFA) concentration, which is indicative of anaerobic degradation. Analysis from ports sited along the AP's length, demonstrated VFA to be primarily formed nearest the inlet where most solids deposition initially incurred, and confirmed the anaerobic reduction of sludge within this chamber. Importantly, the sludge accumulation rate was 0.06 m3 capita−1 y−1 which is in the range of APs operated at higher temperatures and suggests a de-sludge interval of 2.3–3.8 years, up to 10 times longer than current practice for small works. Coincident with the solids deposition profile, biogas production was predominantly noted in the initial AP section, though biogas production increased further along the AP's length following start-up. A statistically significant increase in mean biogas production of greater than an order of magnitude was measured between winters (t(n=19) = 5.52, P < 0.001) demonstrating continued acclimation. The maximum methane yield recorded was 2630 mgCH4 PE−1 d−1, approximately fifty times greater than estimated from sludge storage (57 mgCH4 PE−1 d−1). Anaerobic ponds at small works can therefore enable sludge reduction and longer sludge holding times than present thus offsetting tanker demand whilst reducing fugitive methane emissions currently associated with sludge storage, and based on the enhanced yield noted, could provide a viable opportunity for local energy generation.Item Open Access The impact of hydraulic retention time on the performance of two configurations of anaerobic pond for municipal sewage treatment(Taylor & Francis, 2021-07-06) Cruddas, P. H.; Asproulis, N.; Antoniadis, Antonis F.; Best, D.; Collins, G.; Porca, E.; Jefferson, Bruce; Cartmell, E; McAdam, Ewan J.Anaerobic ponds have the potential to contribute to low carbon wastewater treatment, however are currently restricted by long hydraulic residence time (HRT) which leads to large land requirements. A two-stage anaerobic pond (SAP) design was trialled against a single-stage control (CAP) over four HRTs down to 0.5 days, to determine the lowest HRT at which the ponds could operate effectively. No statistical differences were observed in particulate removal between the ponds over all four HRTs, suggesting solids loading is not a critical factor in AP design. Significantly higher biogas production rates were observed in the SAP than the CAP at 1.5 d and 1.0 d HRT, and microbial community profiling suggests the two-stage design may be facilitating spatial separation of the anaerobic digestion process along reactor length. Hydrogenotrophic methanogensis dominated over aceticlastic, with acetate oxidisation a likely degradation pathway. Experimental tracer studies were compared to CFD simulations, with the SAP showing greater hydraulic efficiency, and differences more pronounced at shorter HRTs. Greater flow recirculation between baffles was observed in CFD velocity profiles, demonstrating baffles can dissipate preferential flow patterns and increase effective pond volume, especially at high flow rates. The study demonstrates the potential of APs to be operated at shorter HRTs in psychrophilic conditions, presenting an opportunity for use as pre-treatments (in place of septic tanks) and primary treatment for full wastewater flows. Two-stage designs should be investigated to separate the stages of the anaerobic digestion process by creating preferential conditions along the pond length.