Browsing by Author "Bloomfield, John P."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Climate change and water in the UK – past changes and future prospects(SAGE, 2015-02-09) Watts, Glenn; Battarbee, Richard W.; Bloomfield, John P.; Daccache, Andre; Hess, Tim; Knox, Jerry; Weatherhead, E. KeithClimate change is expected to modify rainfall, temperature and catchment hydrological responses across the world, and adapting to these water-related changes is a pressing challenge. This paper reviews the impact of anthropogenic climate change on water in the UK and looks at projections of future change. The natural variability of the UK climate makes change hard to detect; only historical increases in air temperature can be attributed to anthropogenic climate forcing, but over the last 50 years more winter rainfall has been falling in intense events. Future changes in rainfall and evapotranspiration could lead to changed flow regimes and impacts on water quality, aquatic ecosystems and water availability. Summer flows may decrease on average, but floods may become larger and more frequent. River and lake water quality may decline as a result of higher water temperatures, lower river flows and increased algal blooms in summer, and because of higher flows in the winter. In communicating this important work, researchers should pay particular attention to explaining confidence and uncertainty clearly. Much of the relevant research is either global or highly localized: decision-makers would benefit from more studies that address water and climate change at a spatial and temporal scale appropriate for the decisions they make.Item Open Access The importance of non-stationary multiannual periodicities in the North Atlantic Oscillation index for forecasting water resource drought(European Geosciences Union (EGU), 2022-05-11) Rust, William; Bloomfield, John P.; Cuthbert, Mark; Corstanje, Ron; Holman, Ian P.Drought forecasting and early warning systems for water resource extremes are increasingly important tools in water resource management in Europe where increased population density and climate change are expected to place greater pressures on water supply. In this context, the North Atlantic Oscillation (NAO) is often used to indicate future water resource behaviours (including droughts) over Europe, given its dominant control on winter rainfall totals in the North Atlantic region. Recent hydroclimate research has focused on the role of multiannual periodicities in the NAO in driving low frequency behaviours in some water resources, suggesting that notable improvements to lead-times in forecasting may be possible by incorporating these multiannual relationships. However, the importance of multiannual NAO periodicities for driving water resource behaviour, and the feasibility of this relationship for indicating future droughts, has yet to be assessed in the context of known non-stationarities that are internal to the NAO and its influence on European meteorological processes. Here we quantify the time–frequency relationship between the NAO and a large dataset of water resources records to identify key non-stationarities that have dominated multiannual behaviour of water resource extremes over recent decades. The most dominant of these is a 7.5-year periodicity in water resource extremes since approximately 1970 but which has been diminishing since 2005. Furthermore, we show that the non-stationary relationship between the NAO and European rainfall is clearly expressed at multiannual periodicities in the water resource records assessed. These multiannual behaviours are found to have modulated historical water resource anomalies to an extent that is comparable to the projected effects of a worst-case climate change scenario. Furthermore, there is limited systematic understanding in existing atmospheric research for non-stationarities in these periodic behaviours which poses considerable implications to existing water resource forecasting and projection systems, as well as the use of these periodic behaviours as an indicator of future water resource drought.Item Open Access Long-range hydrological drought forecasting using multi-year cycles in the North Atlantic Oscillation(Elsevier, 2024-09) Rust, William; Bloomfield, John P.; Holman, IanWith global temperatures, populations and ecological stressors expected to rise, hydrological droughts are projected to have progressively severe economic and environmental impacts. As a result, hydrological drought forecasting systems have become increasingly important water resource management tools for mitigating these impacts. However, high frequency behaviours in meteorological or atmospheric conditions often limit the lead times of hydrological drought forecasts to seasonal timescales, either through poorer performance of multi-year meteorological forecasts or the lack of multi-year lags in atmosphere-hydrology systems. By contrast, low frequency behaviours in regionally important teleconnection systems (such as the North Atlantic Oscillation, NAO) offer a novel way to forecast hydrological drought at longer lead times. This paper shows that, by using a data-driven modelling approach, long-term behaviours within the NAO can be skilful predictors of hydrological drought conditions at a four-year forecasting horizon. Multi-year semi-periodic patterns in the NAO were used to forecast regional groundwater drought coverage in the UK (proportion of groundwater boreholes in drought), with the greatest forecast performance achieved for longer duration droughts, and for hydrogeological regions with longer response times. Model errors vary from 14 % (proportion of boreholes, (MAE)) in flashy hydrological regions or short droughts (<3 months), to 2 % for longer duration droughts (>8 months). Model fits of r2 up to 0.8 were produced between simulated and recorded regional drought coverage. As such our results show that teleconnection indices can be a skilful predictor of hydrological drought dynamics at multi-year timescales, opening new opportunities for long-lead groundwater drought forecasts to be integrated within existing drought management strategies in Europe and beyond.Item Open Access Non‐stationary control of the NAO on European rainfall and its implications for water resource management(Wiley, 2021-02-19) Rust, William; Bloomfield, John P.; Cuthbert, Mark O.; Corstanje, Ron; Holman, Ian P.Water resource forecasting generally centres on understanding hydrological variability over coming months or years, so that water managers can prepare for extremes such as droughts or floods (Chang & Guo, 2020; Hao et al., 2018). Some forecasting systems seek to project further into the future to allow long‐term planning of infrastructure and resilience to extremes and climate change (Svensson et al., 2015). These systems can rely directly or indirectly on outputs from Global Climate Models (GCMs; such as gridded reanalysis datasets) to forecast hydrological conditions (Bhatt & Mall, 2015; Ionita & Nagavciuc, 2020). In the North Atlantic region, in particular Western Europe, the North Atlantic Oscillation (NAO) is used as an indicator for hydrometeorological conditions given its leading control on winter rainfall totals (Hurrell & Deser, 2010; Scaife et al., 2008, 2014). A dipole of pressure anomalies over the North Atlantic, the NAO's positive phase (greater than average pressure gradient; NAO+) results in wetter conditions in northwest Europe with dryer conditions in southwest Europe (Rust et al., 2018; Trigo et al., 2004). Its negative phase (weaker than average pressure gradient; NAO−) results in the inverse effect on rainfall (Folland et al., 2015; and as shown by the correlation coefficients in Figure 1). Given this relationship, and, considering the role of winter rainfall variability in groundwater drought development (e.g., reduced winter recharge) and generation of late winter/early spring floods, the NAO offers a potential explanatory variable when understanding the behaviour of some hydrological extremes.