Browsing by Author "Burgess, Paul"
Now showing 1 - 20 of 29
Results Per Page
Sort Options
Item Open Access AGFORWARD Project Final Report(Cranfield University, 2018-02-28) Burgess, Paul; den Herder, M.; Dupraz, C.; Garnett, Kenisha; Giannitsopoulos, Michail; Graves, Anil; Hermansen, J. E.; Kanzler, M.; Liagre, F.; Mirck, J.; Moreno, G.; Mosquera-Losada, M. R.; Palma, João H. N.; Pantera, A.; Plieninger, T.Executive summary: The AGFORWARD project (Grant Agreement N° 613520) had the overall goal to promote agroforestry practices in Europe that will advance sustainable rural development. It had four objectives (described below) which address 1) the context and extent of agroforestry in Europe, 2) identifying, developing and field-testing agroforestry innovations through participatory networks, 3) evaluating innovative designs and practices at field-, farm-, and landscape-scales, and promoting agroforestry in Europe through policy development and dissemination. Agroforestry is defined as the practice of deliberately integrating woody vegetation (trees or shrubs) with crop and/or animal systems to benefit from the resulting ecological and economic interactions. Context: European agroforestry has been estimated to cover 10.6 Mha (using a literature review) and 15.4 Mha using the pan-European LUCAS dataset (i.e. 8.8% of the utilised agricultural area). Livestock agroforestry (15.1 Mha) is, by far, the dominant type of agroforestry. The LUCAS analysis provides a uniform method to compare agroforestry areas between countries and over time. Identify, develop and field-test agroforestry innovations: 40 stakeholder groups (involving about 820 stakeholders across 13 European countries) developed and field-tested agroforestry innovations which have been reported in 40 “lesson learnt” reports, and in a user-friendly format in 46 “Agroforestry innovation leaflets”. The innovations for agroforestry systems of high nature and cultural value included cheaper methods of tree protection and guidance for establishing legumes in wood pastures. Innovations for agroforestry with timber plantations, olive groves and apple orchards include the use of medicinal plants and reduction of mowing costs. Innovations for integrating trees on arable farms included assessments of yield benefits by providing wind protection. Innovations for livestock farms included using trees to enhance animal welfare, shade protection, and as a source of fodder. Peer-reviewed journal papers and conference presentations on these and other related topics were developed. Evaluation of agroforestry designs and practices at field- and landscape-scale: a range of publicly available field-scale analysis tools are available on the AGFORWARD website. These include the “CliPick” climate database, and web-applications of the Farm-SAFE and Hi-sAFe model. The results of field- and landscape-scale analysis, written up as peer-reviewed papers, highlight the benefits of agroforestry (relative to agriculture) for biodiversity enhancement and providing regulating ecosystem services, such as for climate and water regulation and purification. Policy development and dissemination: detailed reviews of existing policy and recommendations for future European agroforestry policy have been produced. The support provided is far wider than the single specified agroforestry measures. The recommendations included the collation of existing measures, and that agroforestry systems should not forfeit Pillar I payments. Opportunities for farmlevel and landscape-level measures were also identified. The project results can be found on the project website (www.agforward.eu), a Facebook account (www.facebook.com/AgforwardProject), a Twitter account (https://twitter.com/AGFORWARD_EU), and a quarterly electronic newsletter (http://www.agforward.eu/index.php/en/newsletters-1514.html). The number of national associations in Europe was extended to twelve, and a web-based training resource on agroforestry (http://train.agforward.eu/language/en/agforall/) created. AGFORWARD also supported the Third European Agroforestry Conference in Montpellier in 2016 attracting 287 delegates from 26 countries including many farmers. We also initiated another 21 national conferences or conference sessions on agroforestry, made about 240 oral presentations, 61 poster presentations, produced about 50 news articles, and supported about 87 workshop, training or field-visit activities (in addition to the stakeholder groups).Item Open Access AGFORWARD Third Periodic Report: July 2016 to December 2017(Cranfield University, 2018-03-01) Burgess, Paul; den Herder, M.; Dupraz, C.; Garnett, Kenisha; Giannitsopoulos, Michail; Graves, Anil; Hermansen, J. E.; Kanzler, M.; Liagre, F.; Moreno, G.; Mosquera-Losada, M. R.; Palma, João H. N.; Pantera, A.; Plieninger, T.Project context The European Union has targets to improve the competitiveness of European agriculture and forestry, whilst improving the environment and the quality of rural life. At the same time there is a need to improve our resilience to climate change and to enhance biodiversity. During the twentieth century, large productivity advances were made by managing agriculture and forestry as separate practices, but often at a high environmental cost. In order to address landscape-scale issues such as biodiversity and water quality, we argue that farmers and society will benefit from considering landuse as a continuum including both agriculture and trees, and that there are significant opportunities for European farmers and society to benefit from a closer integration of trees with agriculture. Agroforestry is the practice of deliberately integrating woody vegetation (trees or shrubs) with crop and/or animal systems to benefit from the resulting ecological and economic interactions.Item Open Access Agroforestry as a sustainable land use option to reduce wildfires risk in European Mediterranean areas(Springer, 2020-01-11) Damianidis, Christos; Santiago-Freijanes, Jose Javier; den Herder, Michael; Burgess, Paul; Mosquera-Losada, María Rosa; Graves, Anil; Papadopoulos, Andreas; Pisanelli, Andrea; Camilli, Francesca; Rois-Díaz, Mercedes; Kay, Sonja; Palma, João H. N.; Pantera, AnastasiaWildfires have always been an integral part of the ecology of many terrestrial ecosystems, but their frequency is increasing in many parts of the world. Wildfires were once a natural phenomenon, but after humans learned to control fire, it has been used as a management tool to increase soil fertility, to regenerate natural vegetation for grazing and to control competing vegetation. However, currently uncontrolled wildfires threaten not only natural vegetation, landscape biodiversity, communities and economies, but they also release large amounts of carbon dioxide, thus contributing to global temperature increase. Higher temperatures and drier summers have increased the risk of wildfires in biodiversity rich areas of European Mediterranean countries and have resulted in human casualties. The aim of this article is to investigate whether agroforestry, the practice of integrating woody vegetation and agricultural crops and/or livestock, could be a management tool to reduce wildfires in European Mediterranean countries. Fire events from 2008 to 2017 and data of land cover and land use were spatially correlated. Results indicated that agroforestry areas had fewer wildfire incidents than forests, shrublands or grasslands, providing evidence of the potential of agroforestry to reduce fire risk and protect ecosystems.Item Open Access Agroforestry is paying off – Economic evaluation of ecosystem services in European landscapes with and without agroforestry systems(Elsevier, 2019-02-02) Kay, Sonja; Graves, Anil; Palma, João H. N.; Moreno, Gerardo; Roces-Díaz, José V.; Aviron, Stephanie; Chouvardas, Dimitrios; Crous-Duran, Josep; Ferreiro-Domínguez, Nuria; Garcia de Jalon, Silvestre; Macicasan, Vlad; Mosquera-Losada, María Rosa; Pantera, Anastasia; Santiago-Freijanes, Jose Javier; Szerencsits, Erich; Torralba, Mario; Burgess, Paul; Herzog, FelixThe study assessed the economic performance of marketable ecosystem services (ES) (biomass production) and non-marketable ecosystem services and dis-services (groundwater, nutrient loss, soil loss, carbon sequestration, pollination deficit) in 11 contrasting European landscapes dominated by agroforestry land use compared to business as usual agricultural practice. The productivity and profitability of the farming activities and the associated ES were quantified using environmental modelling and economic valuation. After accounting for labour and machinery costs the financial value of the outputs of Mediterranean agroforestry systems tended to be greater than the corresponding agricultural system; but in Atlantic and Continental regions the agricultural system tended to be more profitable. However, when economic values for the associated ES were included, the relative profitability of agroforestry increased. Agroforestry landscapes: (i) were associated to reduced externalities of pollution from nutrient and soil losses, and (ii) generated additional benefits from carbon capture and storage and thus generated an overall higher economic gain. Our findings underline how a market system that includes the values of broader ES would result in land use change favouring multifunctional agroforestry. Imposing penalties for dis-services or payments for services would reflect their real world prices and would make agroforestry a more financially profitable system.Item Open Access Assessing the environmental impacts of healthier diets. Final report to Defra on project FO0427(2018-09-27) Williams, Adrian; Morris, Joe; Audsley, Eric; Hess, Tim; Goglio, Pietro; Burgess, Paul; Chatterton, Julia; Pearn, Kerry; Mena, Carlos; Whitehead, PeterSummary: oncern about the public health impacts of dietary habits in the UK have led to initiatives to encourage healthier eating, notably in the dietary guidelines represented of the eatwell plate (FSA, 2007) and the Eatwell Guide (NHS, 2016c). A change in UK dietary habits towards healthier eating would result in changes in the type and quantities of food items in the national diet, with implications for agricultural, food and allied industries. More specifically, this could lead to changes in land use and farming practices, both for the UK and its trading partners, with associated effects on greenhouse gas emissions and other environmental impacts. In this context, and sponsored by Defra, this study set out using a series of scenarios to assess the environmental impacts of changing dietary habits and specifically the adoption of healthier eating in the UK, and in broad terms some of the likely social and economic impacts on the agricultural and food sector, through a set of hypothetical scenarios. The main objectives were to: i) determine the consumption of food under possible future food consumption scenarios in the UK, including the eatwell plate; ii) quantify the production of agricultural commodities needed to meet the food needs of each scenario; iii) quantify the environmental impacts of food commodity production and consumption by scenarios, and iv) identify, in broad terms, the possible economic and societal impacts of dietary changes.Item Open Access Creating agroforestry innovation and best practice leaflets(European Agroforestry Federation and the University of Santiago de Compostela, 2018-05-30) Burgess, Paul; Moreno, Gerardo; Pantera, Anastasia; Kanzler, Michael; Hermansen, John; van Lerberghe, Philippe; Balaguer, Fabien; Girardin, Nicolas; Rosati, Adolfo; Graves, Anil; Watté, Jeroen; Mosquera-Losada, Rosa; Waldie, Kevin; Pagella, Tim; Liagre, FabienA key output of the EU FP7 project AGFORWARD was a series of 46 agroforestry innovation and 10 agroforestry best practice leaflets for European farmers and other stakeholders. This paper describes the process of over 80 people working together to create the leaflets and the overall result.Item Open Access Cross-site analysis of perceived ecosystem service benefits in multifunctional landscapes(Elsevier, 2019-05-06) Fagerholm, Nora; Torralba, Mario; Moreno, Gerardo; Girardello, Marco; Herzog, Felix; Aviron, Stephanie; Burgess, Paul; Crous-Duran, Josep; Ferreiro-Domínguez, Nuria; Graves, Anil; Hartel, Tibor; Măcicăsan, Vlad; Kay, Sonja; Pantera, Anastasia; Varga, Anna; Plieninger, TobiasRural development policies in many Organization for Economic Co-operation and Development (OECD) member countries promote sustainable landscape management with the intention of providing multiple ecosystem services (ES). Yet, it remains unclear which ES benefits are perceived in different landscapes and by different people. We present an assessment of ES benefits perceived and mapped by residents (n = 2,301) across 13 multifunctional (deep rural to peri-urban) landscapes in Europe. We identify the most intensively perceived ES benefits, their spatial patterns, and the respondent and landscape characteristics that determine ES benefit perception. We find outdoor recreation, aesthetic values and social interactions are the key ES benefits at local scales. Settlement areas are ES benefit hotspots but many benefits are also related to forests, waters and mosaic landscapes. We find some ES benefits (e.g. culture and heritage values) are spatially clustered, while many others (e.g. aesthetic values) are dispersed. ES benefit perception is linked to people’s relationship with and accessibility to a landscape. Our study discusses how a local perspective can contribute to the development of contextualized and socially acceptable policies for sustainable ES management. We also address conceptual confusion in ES framework and present argumentation regarding the links from services to benefits, and from benefits to different types of values.Item Open Access Data underpinning research article "Effects of conservation tillage drills on soil quality indicators in a wheat€“oilseed rape rotation: Organic carbon, earthworms and water- stable aggregates"(Cranfield University, 2019-10-03 18:27) Giannitsopoulos, Michail; Burgess, Paul; Rickson, JaneGiannitsopoulos ML, Burgess PJ, Rickson RJ. Effects of conservation tillage drills on soil quality indicators in a wheat€“oilseed rape rotation: Organic carbon, earthworms and water- stable aggregates. Soil Use & Management, doi: 10.1111/sum.12536. Data used in the regression analysis for equations 6, 7 and 8 as well figures A, B and CItem Open Access Data underpinning research article "Whole system valuation of arable, agroforestry and tree-only systems at three case study sites in Europe"(Cranfield University, 2020-07-06 08:25) Giannitsopoulos, Michail; Graves, Anil; Burgess, Paul; Crous Duran, Josep; Moreno, Gerardo; Herzog, Felix; HN Palma, Joao; Kay, Sonja; Garcia De Jalon, Silvestre"Interactive Figures A1 and A2, along with their dataset. Figures D1 and D2 dataset"Item Open Access Data underpinning: 'NERC Research Translation: Grassland Management' project(Cranfield University, 2022-09-08 13:38) Giannitsopoulos, Michail; Burgess, Paul; Richter, Goetz; Bell, Matthew; F. E. Topp, Cairistiona; Ingram, Julie; Takahashi, TaroLINGRA-N-Plus along with its Teaching Guide, as developed in the NERC Research Translation: Grassland Management Project, supported by the Sustainable Agriculture Research and Innovation Club (SARIC).Item Open Access Dataset for "Automating the derivation of sugarcane growth stages from Earth Observation time series"(Cranfield University, 2024-09-12) Joshi, Neha; Simms, Daniel; Burgess, PaulItem Open Access Dataset for "Medium-term Effect of Fertilizer, Compost, and Dolomite on Cocoa Soil and Productivity in Sulawesi, Indonesia"(Cranfield University, 2021-07-12 11:01) Fungenzi, Thomas; Sakrabani, Ruben; Burgess, Paul; Lambert, Smilja; McMahon, PeterThis dataset includes: Fig 1a - Individual cocoa tree circumferences, number of dead and replanted trees. Fig 1b - The mean dry bean yields for each treatment, including and excluding tree mortality, as well as the corresponding standard errors and significance labels. Fig 2 (also used for Fig S1) - The results of the soil analyses conducted in 2014 and in 2018 in the Indonesian soil laboratory.Item Open Access Development of Crop.LCA, an adaptable screening life cycle assessment tool for agricultural systems: a Canadian scenario assessment(Elsevier, 2017-06-22) Goglio, Pietro; Smith, Ward N.; Worth, Devon E.; Grant, Brian B.; Desjardins, Raymond L.; Chen, Wen; Tenuta, Mario; McConkey, Brian G.; Williams, Adrian; Burgess, PaulThere is an increasing demand for sustainable agricultural production as part of the transition towards a globally sustainable economy. To quantify impacts of agricultural systems on the environment, life cycle assessment (LCA) is ideal because of its holistic approach. Many tools have been developed to conduct LCAs in agriculture, but they are not publicly available, not open-source, and have a limited scope. Here, a new adaptable open-source tool (Crop.LCA) for carrying out LCA of cropping systems is presented and tested in an evaluation study with a scenario assessment of 4 cropping systems using an agroecosystem model (DNDC) to predict soil GHG emissions. The functional units used are hectares (ha) of land and gigajoules (GJ) of harvested energy output, and 4 impact categories were evaluated: cumulative energy demand (CED), 100-year global warming potential (GWP), eutrophication and acidification potential. DNDC was used to simulate 28 years of cropping system dynamics, and the results were used as input in Crop.LCA. Data were aggregated for each 4-year rotation and statistically analyzed. Introduction of legumes into the cropping system reduced CED by 6%, GWP by 23%, and acidification by 19% per ha. These results highlight the ability of Crop.LCA to capture cropping system characteristics in LCA, and the tool constitutes a step forward in increasing the accuracy of LCA of cropping systems as required for bio-economy system assessments. Furthermore, the tool is open-source, highly transparent and has the necessary flexibility to assess agricultural systems.Item Open Access Dry deposition of air pollutants on trees at regional scale: a case study in the Basque Country(Elsevier, 2019-11-15) García de Jalón, Silvestre; Burgess, Paul; Curiel Yuste, Jorge; Moreno, Gerardo; Graves, Anil; Palma, João H. N.; Crous-Duran, Josep; Kay, Sonja; Chiabai, AlineThere is increased interest in the role of trees to reduce air pollution and thereby improve human health and well-being. This study determined the removal of air pollutants by dry deposition of trees across the Basque Country and estimated its annual economic value. A model that calculates the hourly dry deposition of NO2, O3, SO2, CO and PM10 on trees at a 1 km x 1 km resolution at a regional scale was developed. The calculated mean annual rates of removal of air pollution across various land uses were 12.9 kg O3 ha−1, 12.7 kg PM10 ha−1, 3.0 kg NO2 ha−1, 0.8 kg SO2 ha−1 and 0.2 kg CO ha−1. The results were then categorised according to land use in order to determine how much each land use category contributed to reducing air pollution and to determine to what extent trees provided pollution reduction benefits to society. Despite not being located in the areas of highest pollutions, coniferous forests, which cover 25% of the land, were calculated to absorb 21% of the air pollution. Compared to other land uses, coniferous forests were particularly effective in removing air pollution because of their high tree cover density and the duration of leaf life-span. The total economic value provided by the trees in reducing these pollutants in terms of health benefits was estimated to be €60 million yr−1 which represented around 0.09% of the Gross Domestic Product of the Basque Country in 2016. Whilst most health impacts from air pollution are in urban areas the results indicate that most air pollution is removed in rural areas.Item Open Access Economic valuation of ecosystem goods and services: a review for decision makers(Taylor and Francis, 2019-06-11) Tinch, Robert; Beaumont, Nicola; Sunderland, Tim; Ozdemiroglu, Ece; Barton, David; Bowe, Colm; Börger, Tobias; Burgess, Paul; Cooper, Canon Nigel; Faccioli, Michela; Failler, Pierre; Gkolemi, Ioanna; Kumar, Ritesh; Longo, Alberto; McVittie, Alistair; Morris, Joe; Park, Jacob; Ravenscroft, Neil; Schaafsma, Marije; Vause, James; Ziv, GuyThere is increasing interest in the use of economic valuation of ecosystem goods and services for a wide variety of purposes. These include relatively familiar uses in project appraisal and more novel applications in advocacy, performance tracking and accounting in public and private settings. Decision makers who use valuation information need to understand the background, strengths and weaknesses of these approaches. The methods have a strong foundation in economic theory and offer a rapidly growing evidence base, improving ability to evaluate a broad range of ecosystem goods and services. Nevertheless, there are theoretical and practical limitations that need to be understood and kept in mind when interpreting results. In this paper, we briefly review the economic valuation methods and situate them in their historical and theoretical contexts. We assess the main critiques, attempts at resolving them, and implications for the usefulness of the methods in different contexts. We examine the main barriers and opportunities for wider uses of valuation evidence, and draw conclusions on the appropriate role of valuation in future, as a tool for aiding reflection and deliberation processes.Item Open Access Effects of conservation tillage drills on soil quality indicators in a wheat‐oilseed rape rotation: organic carbon, earthworms and water stable aggregates(Wiley, 2019-07-18) Giannitsopoulos, Michail; Burgess, Paul; Rickson, R. JaneThe effects of five conservation tillage drills with crop residue levels covering between 17% and 79% of the soil, and tillage depths ranging from 25 mm to 200 mm, were examined over three years. The tillage systems ranged from a relatively disruptive Farm System to a Low Disruption system, with three intermediate treatments labelled Sumo DTS, Claydon, and Mzuri. The study involved field sites on a clay or clay loam soil, where winter wheat and oilseed rape were grown in rotation. In the clay field, the Mzuri and Low Disruption treatments, which produced the highest residue coverage, showed the greatest increase in surface total soil organic carbon (1.1 and 0.48 Mg C ha−1 respectively) between year 1 and 3. The least disruptive tillage system also resulted in the highest density of earthworms (181‐228 m−2), and the most disruptive system produced the lowest densities (75‐98 m−2). In the third year, the least disruptive system also showed a higher proportion of water stable aggregates (29.8%) than the other treatments (22.7‐25.3%). Linear regressions showed positive relationships of both soil organic carbon and earthworm density with surface residue cover, and of the proportion of water stable aggregates with soil organic carbon.Item Open Access Exploring agroforestry limiting factors and digitalization perspectives: insights from a european multi-actor appraisal(Springer , 2024-10) Tranchina, Margherita; Burgess, Paul; Cella, Fabrizio Giuseppe; Cumplido-Marin, Laura; Gosme, Marie; den Herder, Michael; Kay, Sonja; Lawson, Gerry; Lojka, Bohdan; Palma, João; Pardon, Paul; Reissig, Linda; Reubens, Bert; Prins, Evert; Vandendriessche, Jari; Mantino, AlbertoDespite its potential for fostering farm sustainability, the adoption of agroforestry faces context-dependent challenges, among which the (perceived) shortage of decision-supporting tools and barriers hindering the assessment of economic, environmental, and social benefits. The process of digitalization offers significant opportunities to enhance sustainability, but it remains crucial to foster a human-centric, fair, and sustainable approach. In the context of the DigitAF Horizon Europe project, we present the results of a multi-stakeholder questionnaire aimed at understanding the perceptions of stakeholders regarding agroforestry and digitalization, as well as the needs of these stakeholders for a successful implementation of this agricultural practice. In the questionnaire, there was a specific focus on the need for and the conditions for the use of digital tools and models, such as generalized digital tools, applications and mapping, climate and weather forecasting and recording, farm management and decision support, and agroforestry and environmental tools. The purpose of this survey was to provide insights to inform agroforestry actors and to foster collaborative initiatives that enhance the potential of digital tools to support the design, implementation, and maintenance of effective and sustainable agroforestry in the European context. Our questionnaire was completed by stakeholders from seven European countries, including farmers, academics, policy actors, farm advisors, and actors in the value chain with an interest in agroforestry. Stakeholders from six living labs, representing Czechia, Finland, Germany, Italy, the Netherlands, and the UK, were involved in the appraisal, along with a multi-stakeholder group from Belgium. Respondents used data and digital tools for various purposes in farming systems and were interested in their potential to improve agroforestry including animal, tree, and crop performance, management guidance, system design, and tree species selection. Our survey revealed that the perceived usefulness of digital tools for agroforestry was substantially higher than stakeholders' awareness of existing tools, indicating a need for better promotion and development of user-friendly, accessible solutions. Additionally, significant obstacles to agroforestry adoption, such as large up-front investments, administrative burdens, and fear of reduced CAP support, were identified, emphasizing the necessity for targeted support and policy improvements. Moving forward, efforts should focus on developing targeted solutions to promote agroforestry according to stakeholder perception, and user-friendly digital tools tailored to the needs and preferences expressed by stakeholders, while also increasing knowledge sharing and capacity building among practitioners and researchers.Item Open Access Farm-SAFE v3 - Comparing the financial benefits and costs of arable, forest, and agroforestry systems(Cranfield University, 2024-02-06 13:58) Graves, Anil; Burgess, Paul; Wiltshire, Katy; Giannitsopoulos, Michail; Herzog, Felix; Palma, JoaoAgroforestry systems integrate trees with livestock and/or arable crops on the same parcel of land. Compared to monoculture arable or grass systems, agroforestry systems can enhance soil conservation, carbon sequestration, species and habitat diversity, and provide additional sources of farm income. Farm-SAFE (Financial and Resource use Model for Simulating AgroForestry in Europe) is a spreadsheet-based bio-economic model which has been developed in Microsoft® Excel® to compare the financial benefits and costs of crop-only, tree-only, and agroforestry system over tree rotations of up to 60 years (Graves et al., 2024a). The results are presented in both graphical and tabular form in terms of a net present value and equivalent annual values. A description and user guide is also available (Graves et al., 2024b). Farm-SAFE requires input of tree and crop yields. One way to obtain crop and tree yields in tree-only, agroforestry, and crop-only systems is to use the Yield-SAFE model. Yield-SAFE is a spreadsheet-based biophysical model which has been developed to enable the prediction of the relationship between tree and crop yields over the rotation of the tree component. A copy of the Yield-SAFE model, together with a full description and user guide, is available here. The original Farm-SAFE model was developed with funding from the European Union through the Silvoarable Agroforestry For Europe project (contract number QLK5-CT-2001-00560). The process of creating a default publicly available version of the model has been enabled through the BioForce project funded by the UK Department for Energy Security and Net Zero. Graves, A.R., Burgess, P.J., Wiltshire, C., Giannitsopoulos, M., Herzog, F., Palma, J.H.N. (2024a). Farm-SAFE v3 model in Excel. Cranfield, Bedfordshire, UK: Cranfield University. Graves, A.R., Burgess, P.J., Wiltshire, C., Giannitsopoulos, M., Herzog, F., Palma, J.H.N. (2024b). Description and User Guide for Farm-SAFE v3. January 2024. Cranfield, Bedfordshire, UK: Cranfield University. 42 pp.Item Open Access Integrating belowground carbon dynamics into Yield-SAFE, a parameter sparse agroforestry model(Springer, 2017-09-16) Palma, João H. N.; Crous-Duran, Josep; Graves, Anil; García de Jalón, Silvestre; Upson, Matthew; Oliveira, Tania S.; Paulo, Joana A.; Ferreiro-Domínguez, N.; Moreno, Gerardo; Burgess, PaulAgroforestry combines perennial woody elements (e.g. trees) with an agricultural understory (e.g. wheat, pasture) which can also potentially be used by a livestock component. In recent decades, modern agroforestry systems have been proposed at European level as land use alternatives for conventional agricultural systems. The potential range of benefits that modern agroforestry systems can provide includes farm product diversification (food and timber), soil and biodiversity conservation and carbon sequestration, both in woody biomass and the soil. Whilst typically these include benefits such as food and timber provision, potentially, there are benefits in the form of carbon sequestration, both in woody biomass and in the soil. Quantifying the effect of agroforestry systems on soil carbon is important because it is one means by which atmospheric carbon can be sequestered in order to reduce global warming. However, experimental systems that can combine the different alternative features of agroforestry systems are difficult to implement and long-term. For this reason, models are needed to explore these alternatives, in order to determine what benefits different combinations of trees and understory might provide in agroforestry systems. This paper describes the integration of the widely used soil carbon model RothC, a model simulating soil organic carbon turnover, into Yield-SAFE, a parameter sparse model to estimate aboveground biomass in agroforestry systems. The improvement of the Yield-SAFE model focused on the estimation of input plant material into soil (i.e. leaf fall and root mortality) while maintaining the original aspiration for a simple conceptualization of agroforestry modeling, but allowing to feed inputs to a soil carbon module based on RothC. Validation simulations show that the combined model gives predictions consistent with observed data for both SOC dynamics and tree leaf fall. Two case study systems are examined: a cork oak system in South Portugal and a poplar system in the UK, in current and future climate.Item Open Access Land use change and soil carbon pools: Evidence from a long-term silvopastoral(Springer, 2017-09-23) Fornara, Dario A.; Olave, Rodrigo; Burgess, Paul; Delmer, Aude; Upson, Matthew; McAdam, JimMulti-functional silvopastoral systems provide a wide range of services to human society including the regulation of nutrients and water in soils and the sequestration of atmospheric carbon dioxide (CO2). Although silvopastoral systems significantly contribute to enhance aboveground carbon (C) sequestration (e.g. C accumulation in woody plant biomass), their long-term effects on soil C pools are less clear. In this study we performed soil physical fractionation analyses to quantify the C pool of different aggregate fractions across three land use types including (1) silvopastoral system with ash trees (Fraxinus excelsior L.), (2) planted woodland with ash trees, and (3) permanent grassland, which were established in 1989 at Loughgall, Northern Ireland, UK. Our results show that 26 years after the conversion of permanent grassland to either silvopastoral or woodland systems, soil C (and N) stocks (0–20 cm depth) did not significantly change between the three land use types. We found, however, that permanent grassland soils were associated with significantly higher C pools (g C kg−1 soil; P < 0.03) of the large macro-aggregate fraction (> 2 mm) whereas soil C pools of the micro-aggregate (53–250 μm) and silt and clay (< 53 μm) fractions were significantly higher in the silvopastoral and woodland systems (P < 0.05). A key finding of this study is that while tree planting on permanent grassland may not contribute to greater soil C stocks it may, in the long-term, increase the C pool of more stable (recalcitrant) soil micro-aggregate and silt and clay fractions, which could be more resilient to environmental change.