CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cantwell, Chris"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Large eddy simulations of isolated and installed jet noise using the high-order discontinuous Galerkin method
    (AIAA, 2023-01-19) Lindblad, Daniel; Sherwin, Spencer J.; Cantwell, Chris; Lawrence, Jack; Proenca, Anderson; Moragues Ginard, Margarida
    A recently developed computational framework for jet noise is used to compute the noise generated by an isolated and installed jet. The framework consists of two parts. In the first part, the spectral/hp element framework Nektar++ is used to compute the near-field flow. Nektar++ solves the unfiltered Navier-Stokes equations on unstructured grids using the high-order discontinuous Galerkin method. The discrete equations are integrated in time using an implicit scheme based on the matrix-free Newton-GMRES method. In the second part, the Antares library is used to compute the far-field noise. Antares solves the Ffowcs Williams - Hawkings equation for a permeable integration surface in the time domain using a source-time dominant algorithm. The simulations are validated against experimental data obtained in the Doak Laboratory Flight Jet Rig, located at the University of Southampton. For the isolated jet, good agreement is achieved, both in terms of the flow statistics and the far-field noise. The discrepancies observed for the isolated jet are believed to be caused by an under-resolved boundary layer in the simulations. For the installed jet, the flow statistics are also well predicted. In the far-field, very good agreement is achieved for downstream observers. For upstream observers, some discrepancies are observed for very high and very low frequencies.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback