Browsing by Author "Carew, Rachael M."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Accuracy of computed radiography in osteometry: a comparison of digital imaging techniques and the effect of magnification(Elsevier, 2019-10-24) Carew, Rachael M.; Viner, Mark D.; Conlogue, Gerald J.; Márquez-Grant, Nicholas; Beckett, SophieIntroduction Osteometric data may be obtained using digital imaging techniques, such as post-mortem computed tomography (PMCT) and digital radiography, non-invasively and without ethical objection. Osteometric data from PMCT is known to be as accurate as taking direct measurements. Digital radiography is more accessible and affordable than PMCT but is limited due to the magnification of its subjects. Objectives To investigate the viability of implementing digital radiographic techniques for measurement of long bones, and to establish whether magnification can be accurately corrected for. Materials and Methods Twenty hind pig (Sus scrofa) legs were imaged using computed radiography (CR) and PMCT, and osteometric data obtained from the digital images and 3D CT volume reconstructions. Direct measurements were taken following maceration. A calibration object was imaged using CR, to provide magnification correction factors. Results Accuracy was determined by mean absolute error (AE), giving values of 3.3 ± 2.5 mm for PMCT (MPR), 2.4 ± 1.3 mm for PMCT (3D), 11.1 ± 7.4 mm for CR (PA), and 18.3 ± 14.5 mm for CR (LAT). PMCT data was more accurate than CR data. Through applying correction for magnification, CR data became closer to the direct measurement data, and stature estimation was substantially altered. Conclusion Magnification in computed radiography affects osteometric data and resulting stature estimations. Applying correction factors may be a viable option for improving accuracy. For digital radiography to be used reliably in forensic anthropology, further empirical research is needed to validate a magnification correction method.Item Open Access Imaging in forensic science: Five years on(2019-01-09) Carew, Rachael M.; Errickson, DavidThe Journal of Forensic Radiology and Imaging was launched in 2013 with the aim to collate the literature and demonstrate high-quality case studies on image-based modalities across the forensic sciences. Largely, the focus of this journal has been on the transmissive aspect of forensic imaging, and therefore a significant number of high-quality case studies have been published focusing on computed tomography and magnetic resonance imaging. As a result, the ‘and imaging’ aspect is often neglected. Since 2013, technology has fundamentally evolved, and a number of new techniques have become accessible or have been demonstrated as particularly useful within many sub-disciplines of forensic science. These include active and passive surface scanning techniques, and the availability of three-dimensional printing. Therefore, this article discusses non-contact techniques, their applications, advantages, and considerations on the current state of play of imaging in forensic science.Item Open Access An overview of 3D printing in forensic science: the tangible third-dimension(Wiley, 2020-05-13) Carew, Rachael M.; Errickson, DavidThere has been a rapid development and utilization of three‐dimensional (3D) printing technologies in engineering, health care, and dentistry. Like many technologies in overlapping disciplines, these techniques have proved to be useful and hence incorporated into the forensic sciences. Therefore, this paper describes how the potential of using 3D printing is being recognized within the various sub‐disciplines of forensic science and suggests areas for future applications. For instance, the application can create a permanent record of an object or scene that can be used as demonstrative evidence, preserving the integrity of the actual object or scene. Likewise, 3D printing can help with the visualization of evidential spatial relationships within a scene and increase the understanding of complex terminology within a courtroom. However, while the application of 3D printing to forensic science is beneficial, currently there is limited research demonstrated in the literature and a lack of reporting skewing the visibility of the applications. Therefore, this article highlights the need to create good practice for 3D printing across the forensic science process, the need to develop accurate and admissible 3D printed models while exploring the techniques, accuracy and bias within the courtroom, and calls for the alignment of future research and agendas perhaps in the form of a specialist working group.