Browsing by Author "Carpenter, Mark"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access Characterization of water droplets size distribution in aviation turbine fuel: ultrasonic homogeniser vs high shear speed mixer(Elsevier, 2022-09-21) Ugbeh-Johnson, Judith; Carpenter, Mark; Okeke, Nonso Evaristus; Mai, NathaliePumps, pressure drops across fittings, and flight operations (such as turning manoeuvres, take-off, and landing) are some of the many sources of turbulence mixing and shearing in aircraft fuel systems, therefore, making it an inevitable condition. Literature established that shearing conditions would influence the droplets and droplets size distribution in an oil/water emulsion. So, low intensity shearing conditions could be beneficial as it promotes droplets coalescence, which could be a driving force for a weak emulsion. However, to date no experimental data has shown the influence homogenising intensity and total water content has on dispersed water droplets size distribution in aviation fuel. Therefore, to expand knowledge of quantification of measurements of dispersed water droplets in aviation fuel, this study characterizes dispersed water droplets in aviation turbine fuel, varying available laboratory homogenising devices and water content. Results presented show that droplets count increases with water concentration and shearing effect. To provide more statistical evidence, kurtosis and skew values were calculated from the extrapolated data and compared with data from a hexanol/water mixture given that hexanol is likely to form a stable emulsion. Experimental results show that the higher the homogenising intensity the more stable the emulsion is likely to be with a higher kurtosis and skew value close to that for the hexanol/water mixture. Therefore, observations show that mild shearing conditions (high shear mixing in this case) could help promote droplets coalescence, leading to a better separation ability.Item Open Access Complexities associated with nucleation of water and ice from jet fuel in aircraft fuel systems: A critical review(Elsevier, 2021-10-29) Ugbeh-Johnson, Judith; Carpenter, Mark; Williams, Colleen; Pons, Jean-François; McLaren, DanThe contamination and behaviour of water in aircraft fuel systems remains a significant global research interest following several aircraft incidents. To engineer a solution to the problem of icing in jet fuel, it is crucial to precisely identify the conditions and features that may exacerbate this phenomenon. This review will aid prospective researchers to identify work that has been done and work that is yet to be available for future study. In this review, conclusive data integrating a wide range of literature and also providing an in-depth description of the factors that influence the behaviour of trace water, ice formation in jet fuels was carefully summarised. On investigational studies, it was discovered that to date, no work is available that studies the impact of sustainable jet fuel and its blends on ice formation, size and frequency distribution of dispersed water droplets in aircraft fuel systems. Findings from comparative studies also reveal that surfaces will have an essential role in the growth pattern of ice in aircraft fuel systems. Furthermore, findings show that supercooled water droplets with sizes greater than or equal to 5 µm can induce ice accretion. This review identified a common problem with the prominent methods of reporting results as a graphically fitted plot. Subsequently, it proposed that authors of any original technical work provide raw data as supplementary information to allow comprehensibility. The study further offers a system that could help manage the nature of ice in aircraft fuel tank systems—making it readily available and accessible.Item Open Access Effects of Particulate Contamination and Jet Fuel Chemistry on the Nucleation of Water and Ice in Aircraft Fuel Systems(Cranfield University, 2022-04) Ugbeh-Johnson, Judith; Carpenter, Mark; Mai, Nathalie; Williams, MikeThe aviation industry is currently facing increasing environmental and energy challenges regarding its fuel use. Research is therefore currently under way to develop new sustainable aviation fuels. Understanding the properties of these fuels (along with the changing properties of existing fuel types) is required to understand their impact on aircraft fuel systems. Water solubility, water settling and ice formation in fuel are such properties of interest. The presence of water in jet fuel/fuel systems has been a long-standing issue in the aviation industry. Therefore, it is important to precisely identify the conditions and features that may exacerbate this phenomenon, understanding how fuel composition, temperature, water droplet sizes, flowrate and pipe surface affect ice formation and water solubility. Currently, there is relatively limited data regarding water solubility/settling rate and ice formation in sustainable fuels, specifically those specified in ASTM D7566. This work gives a comprehensive account of the recent advances and technologies in the literature indicating conditions that might lead to the nucleation of water and ice in aircraft fuel systems. These conditions have then been applied to characterizing dispersed water droplets in alternative fuels and conventional Jet A-1. Subsequently, the requirements have been applied to the design, set up, and effectiveness of an ice test rig to understand the types and amounts of ice that can be produced from different sustainable aviation fuel blends. In doing so, this work has helped shed light on the role of fuel composition in ice accretion and whether ice accumulation on a pump inlet strainer may impact pump performance. Furthermore, the results from this work will serve as a basis for design guidelines to minimise ice formation within an aircraft fuel system and help identify some potential/sustainable jet fuel candidates for ASTM D7566 certified jet fuels.Item Open Access The impact of sustainable aviation fuels on aircraft fuel line, ice formation and pump performance(Cambridge University Press (CUP), 2023-02-21) Ugbeh-Johnson, Judith; Carpenter, MarkWith the aviation industry facing increasing environmental and energy challenges, there has been a growing demand for sustainable aviation fuel (SAF). Previous studies have shown the role of ice accretion, release and blockage in aviation-related incidents and accidents with conventional jet fuel. However, there is no available data that establishes the magnitude of influence new fuel compositions will pose on ice formation and accretion in aircraft fuel systems. A recirculating fuel test rig capable of cooling fuel from ambient to −30°C within 4h was built by Airbus to simulate conditions in an aircraft wing tank and allow characterisation of ice accretion. The key characteristic was the pressure drop across an inline fuel strainer for the different SAF explored but visual analysis of ice accretion on the strainer mesh (filters used in protecting fuel feed pumps) was also performed for individual experimental runs for comparison. Measurements revealed that 100% conventional fuel exhibited a higher propensity to strainer blockage compared to the SAF tested. However, all SAF blends behaved differently as the blending ratio with Jet A-1 fuel had an impact on the pressure differential at different temperatures. Data from this work are essential to establish confidence in the safe operation of future aircraft fuel systems that will potentially be compatible with 100 % SAF.Item Open Access Investigation of Water Droplet Size Distribution in Conventional and Sustainable Aviation Turbine Fuels(Cranfield University, 2022-06-24 10:13) Ugbeh, Judith; Carpenter, Mark; Okeke, NonsoWater droplet size variation has been established in the literature as an important variable that influences the behaviour and characteristics of water in fuel emulsion. However, with the growing demand for sustainable aviation fuels (SAF), no data is available that shows how these fuels will affect dispersed water droplets’ size and frequency distribution. To address this lack of knowledge, this study explores and presents experimental results on the characterization of dispersed water droplets in alternative fuel and conventional Jet A-1 fuel under dynamic conditions. The alternative fuels comprised of two fully synthetic fuels, two fuels synthesised from bio-derived materials and one bio-derived fuel. The data and statistics presented reveal that water droplet frequency and size distribution are sensitive to changes in fuel composition. Observations show that the evident transition of the droplet’s percentile over time in the cumulative frequency distribution could be attributed to droplets coalescence to form larger droplets. Mean droplet diameters between 3 and 6 µm were observed for all the fuels tested. With further analysis based on recommendations proposed in this work, the data may assist in providing insight to filter manufacturers.Item Open Access Investigation of water droplet size distribution in conventional and sustainable aviation turbine fuels(Society of Automotive Engineers, 2022-05-17) Ugbeh Johnson, Judith; Carpenter, Mark; Okeke, Nonso Evaristus; Nnabuife, Somtochukwu Godfrey; Mai, NathalieWater droplet size variation has been established in the literature as an important variable that influences the behavior and characteristics of water in fuel emulsion. However, with the growing demand for sustainable aviation fuels (SAF), no data is available that shows how these fuels will affect the size of dispersed water droplets and their frequency distribution. To address this lack of knowledge, this study explores and presents experimental results on the characterization of dispersed water droplets in alternative fuels and Jet A-1 fuel under dynamic conditions. The alternative fuels comprised of two fully synthetic fuels, two fuels synthesized from bio-derived materials, and one bio-derived fuel. The data and statistics presented reveal that water droplet frequency and size distribution are sensitive to changes in fuel composition. Observations showed an evident transition of the droplet percentile over time in the cumulative frequency distribution; this could be attributed to droplet coalescence to form larger droplets. Mean droplet diameters between 3 and 6 μm were observed for all the fuels tested. With further analysis based on recommendations proposed in this work, the data may assist in providing insight to filter manufacturers.Item Open Access The impact of sustainable aviation fuels on aircraft fuel line ice formation and pump performance(Cranfield University, 2023-02-01 10:51) Ugbeh, Judith; Carpenter, MarkA recirculating fuel test rig capable of cooling fuel from ambient to -30 °C within 4 hours was built by Airbus to simulate conditions in an aircraft wing tank and allow characterisation of ice accretion. The key characteristic was the pressure drop across an inline fuel strainer for the different SAF explored but visual analysis of ice accretion on the strainer mesh (filters used in protecting fuel feed pumps) was also performed for individual experimental runs for comparison. Measurements revealed that 100% conventional fuel exhibited a higher propensity to strainer blockage compared to the SAF tested. However, all SAF blends behaved differently as the blending ratio with Jet A-1 fuel had an impact on the pressure differential at different temperatures. Data from this work are essential to establish confidence in the safe operation of future aircraft fuel systems that will potentially be compatible with 100 % SAF.Item Open Access Thermomechanical characterisation of cross-linked β-cyclodextrin polyether binders(Elsevier, 2018-11-26) Luppi, Federico; Kister, Guillaume; Carpenter, Mark; Dossi, EleftheriaCyclodextrins are promising building blocks for the synthesis of industrial binders. A new binder was prepared by cross-linking β-cyclodextrin with variable amounts of polyethylene glycol diglycidyl ether (40–60% w/w) to produce a soft polyether network that was soluble in water and alcohol, and the thermomechanical properties of the binder were determined. Increasing the amount of cross-linker reduced the glass transition temperature of the binder, as determined by differential scanning calorimetry and dynamic mechanical analysis. Cooling experiments revealed sudden stress relief below the glass transition temperature, reflecting the de-bonding of the polymer from the metallic supports. This was prevented by contact with polytetrafluoroethylene tape. Optical microscopy confirmed the stress relief in the form of cracking, and revealed self-healing by reptation, promoted by a higher cross-linker content and temperature. The information gained on the influence of the support medium on the thermomechanical properties of the cross-linked β-cyclodextrins can be used by industry for optimising manufacture and storage methods for new binders.Item Open Access Water content detection in aviation fuel by using PMMA based optical fiber grating(Elsevier, 2018-11-28) Zhang, Wei; Lao, Liyun; Hammond, David; Carpenter, Mark; Williams, ColleenWater in aviation fuel is a destructive contaminant and can cause serious problems that compromise aircraft’s safe operation and reduce its efficiency and lifetime. Online monitoring of water content in aviation fuel would permit the control of water content before it builds up to dangerous level. Optical fibers made of PMMA have water affinity. In a PMMA based optical fiber Bragg grating (POFBG) its refractive index and volume vary with the water content. This feature is used to detect tiny water content in aviation fuel in this work. The sensing mechanism of POFBG is analyzed. POFBG wavelength is found to be the function of both temperature and equilibrium relative humidity (ERH). POFBG response to water content in fuel can be determined by the ERH. The sensor is experimented at different environmental conditions to identify its sensitivity. As a result, a general expression of POFBG response is achieved. Water content in Jet-A1 is measured by using POFBG sensor calibrated with both environmental chamber and coulometric titration. POFBG sensor is finally tested in a simulation fuel tank, demonstrating a better performance than coulometric titration. A sensitivity of POFBG wavelength change to water content of 33 pm/ppm is achieved at room temperature, indicating detectable water content of 0.03 ppm.