Browsing by Author "Chandel, Neha"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Advances in algal biomass pretreatment and its valorisation into biochemical and bioenergy by the microbial processes(Elsevier, 2022-06-09) Bhatia, Shashi Kant; Ahuja, Vishal; Chandel, Neha; Gurav, Ranjit; Bhatia, Ravi Kant; Govarthanan, Muthusamy; Tyagi, Vinay Kumar; Kumar, Vinod; Pugazendhi, Arivalagan; Banu, J. Rajesh; Yang, Yung-HunUrbanization and pollution are the major issues of the current time own to the exhaustive consumption of fossil fuels which have a detrimental effect on the nation's economies and air quality due to greenhouse gas (GHG) emissions and shortage of energy reserves. Algae, an autotrophic organism provides a green substitute for energy as well as commercial products. Algal extracts become an efficient source for bioactive compounds having anti-microbial, anti-oxidative, anti-inflammatory, and anti-cancerous potential. Besides the conventional approach, residual biomass from any algal-based process might act as a renewable substrate for fermentation. Likewise, lignocellulosic biomass, algal biomass can also be processed for sugar recovery by different pre-treatment strategies like acid and alkali hydrolysis, microwave, ionic liquid, and ammonia fiber explosion, etc. Residual algal biomass hydrolysate can be used as a feedstock to produce bioenergy (biohydrogen, biogas, methane) and biochemicals (organic acids, polyhydroxyalkanoates) via microbial fermentation.Item Open Access Molecular biology interventions for activity improvement and production of industrial enzymes(Elsevier, 2020-12-24) Bhatia, Shashi Kant; Vivek, Narisetty; Kumar, Vinod; Chandel, Neha; Thakur, Meenu; Kumar, Dinesh; Yang, Yung-Hun; Pugazhendhi, Arivalagan; Kumar, GopalakrishnanMetagenomics and directed evolution technology have brought a revolution in search of novel enzymes from extreme environment and improvement of existing enzymes and tuning them towards certain desired properties. Using advanced tools of molecular biology i.e. next generation sequencing, site directed mutagenesis, fusion protein, surface display, etc. now researchers can engineer enzymes for improved activity, stability, and substrate specificity to meet the industrial demand. Although many enzymatic processes have been developed up to industrial scale, still there is a need to overcome limitations of maintaining activity during the catalytic process. In this article recent developments in enzymes industrial applications and advancements in metabolic engineering approaches to improve enzymes efficacy and production are reviewedItem Open Access Progress in microalgal mediated bioremediation systems for the removal of antibiotics and pharmaceuticals from wastewater(Elsevier, 2022-02-16) Chandel, Neha; Ahuja, Vishal; Gurav, Ranjit; Kumar, Vinod; Tyagi, Vinay Kumar; Pugazhendhi, Arivalagan; Kumar, Gopalakrishnan; Kumar, Deepak; Yang, Yung-Hun; Bhatia, Shashi KantWorldwide demand for antibiotics and pharmaceutical products is continuously increasing for the control of disease and improvement of human health. Poor management and partial metabolism of these compounds result in the pollution of aquatic systems, leading to hazardous effects on flora, fauna, and ecosystems. In the past decade, the importance of microalgae in micropollutant removal has been widely reported. Microalgal systems are advantageous as their cultivation does not require additional nutrients: they can recover resources from wastewater and degrade antibiotics and pharmaceutical pollutants simultaneously. Bioadsorption, degradation, and accumulation are the main mechanisms involved in pollutant removal by microalgae. Integration of microalgae-mediated pollutant removal with other technologies, such as biodiesel, biochemical, and bioelectricity production, can make this technology more economical and efficient. This article summarizes the current scenario of antibiotic and pharmaceutical removal from wastewater using microalgae-mediated technologies.