Browsing by Author "Chen, Wenchuang"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access A comparative experimental study on the hydrodynamic performance of two floating solar structures with a breakwater in waves(Elsevier, 2024-12) Yang, Yifeng; Mi, Chenhao; Ou, Binjian; Wong, Anson; Duffy, John Gordon; Wood, Tim; Utama, IKAP; Chen, Wenchuang; Huang, LuofengFloating Photovoltaic (FPV) is considered as a highly promising clean energy solution. In recent years, FPV has been widely deployed in calm water around the world. However, to find available space for further expansion, FPV needs to be deployed in seas whilst the oceanic waves significantly influence the structural stability and energy performance. On one hand, wave loads may cause structural fatigue and damage. On the other hand, wave-induced rotations of a floating solar panel will vary its tilt angle to the sunlight and thus affect the power output. To explore the new research field of ocean-based FPV, this work first designed a novel catamaran FPV floater with a four-point mooring system. Comparative experiments were then conducted in a wave tank to compare its seakeeping ability with a conventional flat-plate floater. Besides, a breakwater structure was further introduced to enhance the stability of these two types of floaters. Detailed data on floater motions and mooring line forces were collected under monochromatic wave conditions. Extensive analysis was performed to evaluate the wave-mitigating performance of the breakwater, as well as the nonlinearity in the motion and force time histories. Overall, the work provides valuable experimental data and novel insights into the design of FPV floaters and breakwater protection, supporting long-term sustainability of FPV on the ocean.Item Open Access Array analysis on a seawall type of deformable wave energy converters(Elsevier, 2024-03-24) Wei, Yujia; Wang, Chao; Chen, Wenchuang; Huang, LuofengThere has been a significant interest in developing Flexible Wave Energy Converters (FlexWECs) that utilise structural deformations to generate electricity and mitigate destructive wave loads to the devices. In the meantime, FlexWECs are most likely to operate in an array format to enhance space usage and power output, as well as provide convenience for maintenance. In this context, the present paper develops a high-fidelity computational model to investigate the interaction of ocean surface waves with an array of seawall-type FlexWECs, which can meanwhile serve coastal engineering purposes. The fluid field is solved using the Navier-Stokes equations, and structural deformations are predicted using a nonlinear finite-element method. Hydroelastic interactions of up to seven deforming FlexWECs with the surrounding wave fields are demonstrated through systematic simulation cases. Based on the simulation results, analyses are conducted to investigate how the wave farm energy output is influenced by the gap between individual devices and the number of devices deployed. Accordingly, empirical design suggestions are provided. Overall, this work innovatively simulates the hydroelastic interactions between waves and multiple deforming structures, and the provided insights are useful for promoting the development of FlexWECs and their wave farms.Item Open Access Enhanced data-driven economic assessment of fuel cell electric buses utilizing an improved Markov chain Monte Carlo approach(Elsevier, 2025-02-10) Yuan, Xinjie; Xu, Miao; Hou, Zhongjun; Chen, Wenchuang; Huang, Yun; Lv, Jiaming; Xu, Xudong; Huang, LuofengAccurate economic assessment of proton exchange membrane fuel cell (PEMFC) vehicles is essential for optimizing control strategies in the PEMFC industry, which is largely driven by the need to reduce costs. Traditional data-driven approaches have focused on reconstructing typical driving cycles from real-world speed data, often overlooking the intensity and acceleration of these cycles. These factors are crucial for water and heat management in PEMFCs and can lead to inaccurate estimates of hydrogen consumption. This paper introduces a novel algorithm for typical driving cycles reconstruction based on real-world data, named the improved two-dimensional Markov Chain Monte Carlo (2D MCMC) approach using Metropolis-Hastings (M − H) sampling. The approach innovatively encodes the integration of real-time vehicle speed and acceleration sequences into a hierarchical 2D state transition probability matrix. To optimise both accuracy and computation time, the M − H based sampler is newly introduced to generate typical driving cycle without the computational burden of multiplying large matrices. Moreover, by integrating the agglomerative nesting (AGNES) alongside a comprehensive evaluation system that incorporates simulation and bench testing, the proposed approach effectively weights real-world route conditions in the economic assessment. Case studies involving 10 PEMFC hybrid buses in Shanghai, China, validate the effectiveness and robustness of the proposed method. Comparative analyses show that the relative errors in hydrogen consumption per 100 km between the reconstructed and real-world driving cycles are within 1.20–3.01% for all ten buses in Shanghai, with computation times reduced by up to 12.60% compared to the existing methods.Item Unknown Hydrodynamic performance of a three-unit heave wave energy converter array under different arrangement(Elsevier, 2023-12-17) Chen, Wenchuang; Huang, Zhenhai; Zhang, Yongliang; Wang, Liguo; Huang, LuofengA pile-restrained floating wave energy converter (WEC) array is proposed as an alternative to a single floater of the size of the array for use as a floating breakwater. The hydrodynamics of the WEC are modelled based on the Navier-Stokes equations and the model is verified by comparing its results with existing experimental data. The model then is used to characterize the array composed by a line of three WECs in terms of floater heaving, wave energy conversion, wave reflection, transmission and dissipation, for different layouts. In the examined array configuration, the aligned arrays exhibit superior performance compared to the staggered arrays, comprehensively considering both wave energy conversion and wave transmission. Specifically, when khi > 1.73, the wave energy conversion efficiency of the aligned array with a spacing of 0.1 times the WEC width ranges from 0.141 to 0.330, while the wave transmission coefficient ranges from 0.187 to 0.472, indicating the effectiveness of the arrays in simultaneously reducing wave transmission and converting wave energy under shorter-wavelength conditions. Compared to a single WEC of the same dimensions, the array exhibits a remarkable increase in wave energy conversion efficiency and effectively reduce wave reflection.Item Open Access Hydroelastic modelling of a deformable wave energy converter including power take-off(Elsevier, 2024-11-01) Wang, Chao; Wei, Yujia; Chen, Wenchuang; Huang, LuofengGiven the advantages of flexible wave energy converters (FlexWECs), such as deformation-led energy harnessing and structural loading compliance, there has been a significant interest in FlexWECs in both academia and industries. To simulate the FlexWEC interaction with ocean surface waves, a 3D computational fluid-structure interaction approach is developed in this study. The fluid and solid governing equations are discretized using finite difference and finite element methods, respectively. An immersed boundary method is used to couple the two independent grid systems. A novel numerical technique is introduced to model the dielectric elastomer generator (DEG) as the power take-off (PTO). The wave energy capture performance is analysed for different PTO configurations and at various wave conditions. Based on the obtained results, the PTO damping coefficient and the relative wavelength range that maximizes the capture width ratio (CWR) are determined. The wavefield results also reveal the presence of wave-height enhancement and attenuation points around a single FlexWEC, providing potential site selection references when deploying multiple FlexWECs in an array.Item Embargo Improving wave energy conversion performance of a floating BBDB-OWC system by using dual chambers and a novel enhancement plate(Elsevier, 2024-03-23) Chen, Wenchuang; Xie, Weixin; Zhang, Yongliang; Wang, Chen; Wang, Liguo; Huang, LuofengIn this study, a novel floating dual-chamber backward bent duct buoy oscillating water column (BBDB-OWC) wave energy converter (WEC) is introduced, featuring a horizontal plate at the bottom of the front chamber to act as an enhancement plate. A three-dimensional computational fluid dynamics (CFD) model is developed and validated by comparing its results with existing experimental measurements. The validated model is employed to investigate the hydrodynamic performance and power generation characteristics of the dual-chamber BBDB-OWC WEC under various conditions, including variations in the length of the horizontal plate (lp/lf) and different regular wave conditions. Key performance metrics, including peak to average ratio of power (PTARP), wave energy capture width ratio (ξtotal), and its wave period respond bandwidth (indicated by Pξtotal > 0.5 and Pξtotal > 0.7), are analyzed and compared with those of a traditional single-chamber BBDB-OWC WEC. The results reveal that, compared to the single-chamber WEC, the dual-chamber WEC with a specific horizontal plate length reduces the average PTARP from 2.88 to a minimum value of 1.82 for lp/lf = 0.5, improves the average ξtotal from 0.55 to a maximum value of 0.64 for lp/lf = 2.5, and increases Pξtotal > 0.5 and Pξtotal > 0.7 from 71 % and 14 % to maximum values of 86 % and 43 % for lp/lf = 2.5, respectively. An explanation for these observations is also provided in the context of structure motion and flow fields.Item Open Access Interactive effects of deformable wave energy converters operating in close proximity(Elsevier, 2024-11-01) Wang, Chao; Wei, Yujia; Chen, Wenchuang; Huang, LuofengFlexible wave energy converters (FlexWECs) have been gaining increasing research and industrial interest as their deformable nature can potentially remedy the structural issues that limit the development of rigid WECs. To maximise the usage of space and infrastructure and improve energy efficiency, FlexWECs are normally deployed in close proximity, where the wave interaction with one device can influence others, signifying the opportunity to obtain energy efficiency enhancement from the interactions. To investigate the power capture performance of a FlexWEC array, this study employed a validated three-dimensional high-fidelity computational method to simulate the wave interaction with three FlexWECs in various array arrangements including power-take off. Based on systematic simulation cases, the present work analysed the relation between the geometrical characteristics of an isolated FlexWEC's perturbed wave field and the array's overall energy capture efficiency. The constructive interaction of the array was found the strongest when the longitudinal and lateral spacings of the array were 0.6 and 1 times of incident wavelength respectively, with a 15 % enhancement of overall captured energy compared to three devices operating in isolation. Overall, this study provides insights into the fluid-structure interaction of waves with multiple deformable structures, facilitating the modelling and planning of FlexWECs.