Browsing by Author "Cox, Rylan"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Open Access A bespoke carbon footprint framework to set the path towards Net Zero in foundries(Elsevier, 2024) Cox, Rylan; Pagone, Emanuele; Jolly, Mark R.; Salonitis, Konstantinos; Birch, TimA bespoke carbon footprint framework for the metal casting industry is presented to enable swifter carbon accounting of foundries and identify energy and carbon footprint hotspots to support the drive towards Net Zero goals. Many manufacturing enterprises in the United Kingdom and Europe are already struggling to maintain financial competitiveness as well as drive towards a sustainable shift, particularly SMEs. This framework is to help alleviate the pressure on the industry by providing an outside tool to direct companies to sustainable solutions. This paper validates such framework breaking down the environmental footprint of ferrous products through energy and material profiles of sand casting processes in two real UK foundries identified as “A” and “B”. During environmental visits, it was established that Foundry A emitted an average of 41700 tons of CO2 annually and Foundry B 1400 tons. The framework developed to estimate the melting process energy (to be, then, converted into carbon footprint) predicted with about 15% accuracy the actual data. Furthermore, the framework can be expanded and improved on for its accuracy and into other processes within the casting process including melting, core and mould making, pouring sand reclamation, ancillaries and fettling.Item Open Access Characterising flow with continuous aeration in an oscillatory baffle flow reactor using residence time distribution(Royal Society of Chemistry, 2023-08-30) Cox, Rylan; Salonitis, Konstantinos; Impey, Susan A.; Rebrov, EvgenyMulti-phase flow occurs in many reactions with gas, an integral part of the reaction. This study assesses the synergistic impact of continuous aeration and velocity ratio on mixing conditions within an oscillatory baffled flow reactor to enhance the degree of plug flow, quantified by a tanks-in-series (TiS) model. A bubbly flow regime is shown in all experiments. In most cases, the TiS value was reduced with gas flow, and a maximum TiS value of 23.6 was achieved at a velocity ratio of 3.8 at 225 ml min−1 in a counter-current direction. Single-phase runs and co-current multi-phase runs produced maximum TiS values of 23.5 and 18.2 respectively at a velocity ratio of 2.2. Regardless of the gas flow rate, the velocity ratio was found to be the most influential factor that dictates the level of plug flow within the OBR. A predictive model is developed and used to maximise the mixing efficiency by determining the level of plug flow within the OBR at selected amplitudes, frequencies, and gas flow rates.Item Open Access Data set for Characterising flow with continuous aeration in an oscillatory baffle flow reactor using residence time distribution(Cranfield University, 2023-09-05 10:29) Cox, Rylan; Salonitis, Konstantinos; Impey, SueRaw data for the following paper: Characterising flow with continuous aeration in an oscillatory baffle flow reactor using residence time distribution. Data was processed iteratively to reach the final TiS values portrayed within the publication and were compared with the TiS model for validation.Item Open Access Development of hypertolerant strain of Yarrowia lipolytica accumulating succinic acid using high levels of acetate(American Chemical Society, 2022-08-09) Narisetty, Vivek; Prabhu, Ashish A.; Bommareddy, Rajesh Reddy; Cox, Rylan; Agrawal, Deepti; Misra, Ashish; Ali Haider, M.; Bhatnagar, Amit; Pandey, Ashok; Kumar, VinodAcetate is emerging as a promising feedstock for biorefineries as it can serve as an alternate carbon source for microbial cell factories. In this study, we expressed acetyl-CoA synthase in Yarrowia lipolytica PSA02004PP, and the recombinant strain grew on acetate as the sole carbon source and accumulated succinic acid or succinate (SA). Unlike traditional feedstocks, acetate is a toxic substrate for microorganisms; therefore, the recombinant strain was further subjected to adaptive laboratory evolution to alleviate toxicity and improve tolerance against acetate. At high acetate concentrations, the adapted strain Y. lipolytica ACS 5.0 grew rapidly and accumulated lipids and SA. Bioreactor cultivation of ACS 5.0 with 22.5 g/L acetate in a batch mode resulted in a maximum cell OD600 of 9.2, with lipid and SA accumulation being 0.84 and 5.1 g/L, respectively. However, its fed-batch cultivation yielded a cell OD600 of 23.5, SA titer of 6.5 g/L, and lipid production of 1.5 g/L with an acetate uptake rate of 0.2 g/L h, about 2.86 times higher than the parent strain. Cofermentation of acetate and glucose significantly enhanced the SA titer and lipid accumulation to 12.2 and 1.8 g/L, respectively, with marginal increment in cell growth (OD600: 26.7). Furthermore, metabolic flux analysis has drawn insights into utilizing acetate for the production of metabolites that are downstream to acetyl-CoA. To the best of our knowledge, this is the first report on SA production from acetate by Y. lipolytica and demonstrates a path for direct valorization of sugar-rich biomass hydrolysates with elevated acetate levels to SA.Item Open Access Evaluating LCA product families in an approach to determine baseline emissions within aerospace manufacturing(Elsevier, 2024-05-07) Cox, Rylan; Venkatapuram, Roopa Sai Reddy; Afy-Shararah, Mohamed; Carter, Joseph L.; Artingstall, James; Salonitis, KonstantinosThis paper investigates a Life Cycle Assessment (LCA) based methodology to determine baseline emissions for an aerospace manufacturer. Aerospace manufacturing entails high complexity and low throughput of a vast array of components. Rather than establishing the environmental footprint through waste, electric, and gas data alone; an LCA cradle-to-gate approach extends to a product's raw material acquisition and shipment to provide a comprehensive set of environmental performance indicators. The approach combines several products that follow a similar manufacturing process and can be denoted as a product family. This paper discusses the ability that LCA product families must develop baseline emissions for products validated with a case study of an aerospace component. The methodology can be extended to other product families manufactured within the facility which when combined will accumulate to a site-wide environmental footprint. The paper further evaluates how this methodology can identify environmental hotspots at a process and product level. The aerospace component case study incorporates several manual and automated stages. This work aims to demonstrate the ease of determining baseline emissions using an LCA product family and enable aerospace manufacturing companies to adopt a similar approach to establishing environmental hotspots. This can drive strategic internal change for sustainable manufacturing aligning with company environmental, social, and financial frameworks.Item Open Access Fermentative valorisation of xylose-rich hemicellulosic hydrolysates from agricultural waste residues for lactic acid production under non-sterile conditions(Elsevier, 2023-05-18) Cox, Rylan; Narisetty, Vivek; Castro, Eulogio; Agrawal, Deepti; Jacob, Samuel; Kumar, Gopalakrishnan; Kumar, Deepak; Kumar, VinodLactic acid (LA) is a platform chemical with diverse industrial applications. Presently, commercial production of LA is dominated by microbial fermentation using sugary or starch-based feedstocks. Research pursuits emphasizing towards sustainable production of LA using non-edible and renewable feedstocks have accelerated the use of lignocellulosic biomass (LCB). The present study focuses on the valorisation of xylose derived from sugarcane bagasse (SCB) and olive pits (OP) through hydrothermal and dilute acid pretreatment, respectively. The xylose-rich hydrolysate obtained was used for LA production by homo-fermentative and thermophilic Bacillus coagulans DSM2314 strain under non-sterile conditions. The fed-batch mode of fermentation resulted in maximum LA titers of 97.8, 52.4 and 61.3 g/L with a yield of 0.77, 0.66 and 0.71 g/g using pure xylose, xylose-rich SCB and OP hydrolysates, respectively. Further, a two-step aqueous two-phase system (ATPS) extraction technique was employed for the separation and recovery of LA accumulated on pure and crude xylose. The LA recovery was 45 – 65% in the first step and enhanced to 80–90% in the second step.The study demonstrated an efficient integrated biorefinery approach to valorising the xylose-rich stream for cost-effective LA production and recovery.Item Open Access Recycling bread waste into chemical building blocks using a circular biorefining approach(Royal Society of Chemistry, 2021-09-06) Narisetty, Vivek; Cox, Rylan; Willoughby, Nicholas; Aktas, Emel; Tiwari, Brijesh; Matharu, Avtar Singh; Salonitis, Konstantinos; Kumar, VinodFood waste is a global problem, causing significant environmental harm and resulting in substantial economic losses globally. Bread is the commonly wasted food item in the developed world and presents a severe problem for the majority of European nations. It is the second most wasted food item in the UK after potatoes, with an equivalent of 20 million slices of bread thrown away daily. Bread is a starchy material and a rich and clean source of easily extractable fermentable sugars – this is in direct contrast to lignocellulosic feedstocks where harsh physical, chemical and/or enzymatic pretreatment processes are required for release of fermentable sugars. Furthermore, these necessary lignocellulosic pretreatment methods often produce sugars contaminated with fermentation inhibitors. Therefore, bread waste presents a clear opportunity as a potential carbon source for novel commercial processes and, to this end, several alternative routes have been developed to utilize bread waste. Possibilities for direct recycling of bread waste within the food industry are limited due to the relatively short material lifetime, stringent process and hygiene requirements. Anaerobic digestion (AD) and incineration are commonly employed methods for the valorisation of bread waste, generating limited amounts of green energy but with little other environmental or economic benefits. Most food wastes and by-products in the UK including bakery waste are treated through AD processes that fail to harness the full potential of the these wastes. This short communication reviews the challenges of handling bread waste, with a focus on a specific UK scenario. The review will consider how bread waste is generated across the supply chain, current practices to deal with the waste and logistics challenges in waste collection. The presence of clean and high-quality fermentable sugars, proteins and other nutrients in bread make it an ideal substrate for generating chemicals, fuels, bioplastics, pharmaceuticals and other renewable products through microbial fermentations. We suggest potential applications for recycling bread waste into its chemical building blocks through a fermentative route where a circular biorefining approach could maximize resource recovery and environmental savings and eliminate waste to as close to zero as possible.Item Open Access Revisiting the effect of U-bends, flow parameters, and feasibility for scale-up on residence time distribution curves for a continuous bioprocessing oscillatory baffled flow reactor(American Chemical Society, 2022-07-18) Cox, Rylan; Salonitis, Konstantinos; Rebrov, Evgeny; Impey, Susan A.Abstract An oscillatory baffled flow reactor (OBR) has been designed with 60 interbaffled cells. The baffled columns of 40 mm internal diameter together result in a reactor length of 5740 mm. The oscillatory amplitude and frequency were in the range of 2–12 mm and 0.3–2 Hz, respectively. The report investigates the impact of U-bends and the number of reactor sections on axial dispersion for scale-up feasibility. A prediction model using operating parameters has been developed to maximize plug flow conditions using the tanks-in-series (TiS) model. The maximum TiS value was 13.38 in a single column compared to 43.68 in the full reactor at a velocity ratio of 2.27 using oscillatory parameters 8 mm and 0.3 Hz. The mixing efficiency along the reactor was found to decrease after each column at amplitudes <6 mm compared to amplitudes up to 12 mm, where a negligible impact was observed. U-bend geometry had a significant role in the decrease of TiS values.Item Open Access Supporting data for the publication' High-Level fermentative production of Lactic acid from bread waste under Non-sterile conditions with a circular biorefining approach and zero waste discharge(Cranfield University, 2022-01-13 18:05) Cox, Rylan; Kumar, Vinod; Narisetty, Vivek; Salonitis, Konstantinos; Agarwal, Deepti; V. Ranade, Vivek; Nagarajan, Sanjay; Venus, JoachimBread waste (BW) is a severe solid waste management problem in Europe. The current study demonstrates an environment-friendly solution by valorising BW into lactic acid (LA) and the corresponding solid residues generated during hydrolysis and fermentation to biogas. To this end, BW was saccharified through acidic and enzymatic hydrolysis, and the hydrolysate obtained was used for LA fermentation under non-sterile conditions using thermophilic Bacillus coagulans DSM1. Maximum glucose concentration achieved during acid hydrolysis with 2% (v/v) acid loading and 20% (w/v) solid loading was 67.9 g/L glucose, with a yield of 0.34 g/g BW. The LA accumulated with concentrated BW acid hydrolysate was 102.4 g/L with yield and productivity of 0.75 g/g and 1.42 g/L. h, respectively. For enzymatic hydrolysis, three commercial amylase preparations (Amyloglucosidase, Spirizyme, Dextrozyme) were employed. The highest glucose release (98.6 g/L) and yield (0.49 g glucose/g BW) was attained with Dextrozyme from Novozymes. The fed-batch fermentation by B. coagulans was conducted, using commercial glucose and glucose-rich BW hydrolysate from Dextrozyme. The LA titer, yield and productivity obtained with pure glucose were 222.7 g/L, 0.92 g/g and 1.86 g/L.h, respectively, whereas BW hydrolysate (BWH) resulted in 155.4 g/L LA, with a conversion yield and productivity of 0.85 g/g glucose and 1.30 g/L. h, respectively. Further to the LA biosynthesis, the solid residues generated during hydrolysis and fermentation were subjected to biogas generation, resulting in 553 mL CH4/g volatile solids under batch mode. This massive LA titer amassed under non-sterile conditions and integrated biogas production using fermented residues demonstrates a high potential for an integrated biorefinery based on BW.Item Open Access A unit product energy mapping framework for operation management in manufacturing industries(Elsevier, 2024-05-07) Yuksek, Yagmur Atescan; Haddad, Yousef; Cox, Rylan; Salonitis, KonstantinosSustainability has emerged as a primary concern across a wide range of industries, particularly in manufacturing due to its energy-intensive nature. To understand the environmental impact of manufacturing processes and make them less detrimental to the environment users monitor and track energy consumption data. Although this approach is valuable in assessing the overall impact, energy consumption mapping needs to be conducted per product to compare and assess different process strategies. Available research in literature, provides unit process energy consumption models in isolation from manufacturing operations, neglect of machine and operational variations, and limited consideration of detailed data acquisition for indirect energy consumption. This paper presents a comprehensive framework designed to address the existing gaps in the literature on energy consumption mapping within the manufacturing industry. The proposed framework provides a solution by offering a structured approach to data collection, analysis, and utilization within manufacturing processes, aiming to achieve two main outcomes: the calculation of embodied energy per unit product and the provision of systematically analysed data for operation management to enhance energy efficiency. Four key steps constitute the framework: data acquisition, simulation and modelling, impact assessment, and operation management. The data acquisition step involves the identification of manufacturing process flows, equipment specifics, and process parameters, emphasizing machine operation requirements and power readings. These elements are systematically logged into a database providing essential information for both embodied energy calculation and simulation purposes. Results obtained from simulations are subjected to analysis in the impact assessment step to assess embodied carbon and overall environmental impacts. The collective findings from the first three steps are then utilized for operation management.Item Open Access Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries(Royal Society of Chemistry, 2021-10-26) Narisetty, Vivek; Cox, Rylan; Bommareddy, Rajesh; Agrawal, Deepti; Ahmad, Ejaz; Pant, Kamal Kumar; Chandel, Anuj Kumar; Bhatia, Shashi Kant; Kumar, Dinesh; Binod, Parmeswaran; Gupta, Vijai Kumar; Kumar, VinodBiologists and engineers are making tremendous efforts in contributing to a sustainable and green society. To that end, there is growing interest in waste management and valorisation. Lignocellulosic biomass (LCB) is the most abundant material on the earth and an inevitable waste predominantly originating from agricultural residues, forest biomass and municipal solid waste streams. LCB serves as the renewable feedstock for clean and sustainable processes and products with low carbon emission. Cellulose and hemicellulose constitute the polymeric structure of LCB, which on depolymerisation liberates oligomeric or monomeric glucose and xylose, respectively. The preferential utilization of glucose and/or absence of the xylose metabolic pathway in microbial systems cause xylose valorization to be alienated and abandoned, a major bottleneck in the commercial viability of LCB-based biorefineries. Xylose is the second most abundant sugar in LCB, but a non-conventional industrial substrate unlike glucose. The current review seeks to summarize the recent developments in the biological conversion of xylose into a myriad of sustainable products and associated challenges. The review discusses the microbiology, genetics, and biochemistry of xylose metabolism with hurdles requiring debottlenecking for efficient xylose assimilation. It further describes the product formation by microbial cell factories which can assimilate xylose naturally and rewiring of metabolic networks to ameliorate xylose-based bioproduction in native as well as non-native strains. The review also includes a case study that provides an argument on a suitable pathway for optimal cell growth and succinic acid (SA) production from xylose through elementary flux mode analysis. Finally, a product portfolio from xylose bioconversion has been evaluated along with significant developments made through enzyme, metabolic and process engineering approaches, to maximize the product titers and yield, eventually empowering LCB-based biorefineries. Towards the end, the review is wrapped up with current challenges, concluding remarks, and prospects with an argument for intense future research into xylose-based biorefineries.