Browsing by Author "Dangut, Maren David"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Aircraft predictive maintenance modeling using a hybrid imbalance learning approach(SSRN, 2020-10-26) Dangut, Maren David; Skaf, Zakwan; Jennions, IanThe continued development of the industrial internet of things (IIoT) has caused an increase in the availability of industrial datasets. The massive availability of assets operational dataset has prompted more research interest in the area of condition-based maintenance, towards the API-lead integration for assets predictive maintenance modelling. The large data generated by industrial processes inherently comes along with different analytical challenges. Data imbalance is one of such problems that exist in datasets. It affects the performance of machine learning algorithms, which yields imprecise prediction. In this paper, we propose an advanced approach to handling imbalance classification problems in equipment heterogeneous datasets. The technique is based on a hybrid of soft mixed Gaussian processes with the EM method to improves the prediction of the minority class during learning. The algorithm is then used to develop a prognostic model for predicting aircraft component replacement. We validate the feasibility and effectiveness of our approach using real-time aircraft operation and maintenance datasets. The dataset spans over seven years. Our approach shows better performance compared to other similar methods.Item Open Access Application of data analytics for predictive maintenance in aerospace: an approach to imbalanced learning.(2021-05) Dangut, Maren David; Jennions, Ian K.; King, SteveThe use of aircraft operational logs to predict potential failure that may lead to disruption poses many challenges and has yet to be fully explored. These logs are captured during each flight and contain streamed data from various aircraft subsystems relating to status and warning indicators. They may, therefore, be regarded as complex multivariate time-series data. Given that aircraft are high-integrity assets, failures are extremely rare, and hence the distribution of relevant data containing prior indicators will be highly skewed to the normal (healthy) case. This will present a significant challenge in using data-driven techniques to 'learning' relationships/patterns that depict fault scenarios since the model will be biased to the heavily weighted no-fault outcomes. This thesis aims to develop a predictive model for aircraft component failure utilising data from the aircraft central maintenance system (ACMS). The initial objective is to determine the suitability of the ACMS data for predictive maintenance modelling. An exploratory analysis of the data revealed several inherent irregularities, including an extreme data imbalance problem, irregular patterns and trends, class overlapping, and small class disjunct, all of which are significant drawbacks for traditional machine learning algorithms, resulting in low-performance models. Four novel advanced imbalanced classification techniques are developed to handle the identified data irregularities. The first algorithm focuses on pattern extraction and uses bootstrapping to oversample the minority class; the second algorithm employs the balanced calibrated hybrid ensemble technique to overcome class overlapping and small class disjunct; the third algorithm uses a derived loss function and new network architecture to handle extremely imbalanced ratios in deep neural networks; and finally, a deep reinforcement learning approach for imbalanced classification problems in log- based datasets is developed. An ACMS dataset and its accompanying maintenance records were used to validate the proposed algorithms. The research's overall finding indicates that an advanced method for handling extremely imbalanced problems using the log-based ACMS datasets is viable for developing robust data-driven predictive maintenance models for aircraft component failure. When the four implementations were compared, deep reinforcement learning (DRL) strategies, specifically the proposed double deep State-action-reward-state-action with prioritised experience reply memory (DDSARSA+PER), outperformed other methods in terms of false-positive and false-negative rates for all the components considered. The validation result further suggests that the DDSARSA+PER model is capable of predicting around 90% of aircraft component replacements with a 0.005 false-negative rate in both A330 and A320 aircraft families studied in this researchItem Open Access Application of deep reinforcement learning for extremely rare failure prediction in aircraft maintenance(Elsevier, 2022-02-08) Dangut, Maren David; Jennions, Ian K.; King, Steve; Skaf, ZakwanThe use of aircraft operational logs to predict potential failure that may lead to disruption poses many challenges and has yet to be fully explored. Given that aircraft are high-integrity assets, failures are extremely rare, and hence the distribution of relevant log data containing prior indicators will be highly skewed to the normal (healthy) case. This will present a significant challenge in using data-driven techniques because the model will be biased to the heavily weighted no-fault outcomes. This paper presents a novel approach for predicting unscheduled aircraft maintenance action based on deep reinforcement learning techniques using aircraft central maintenance system logs. The algorithm transforms the rare failure prediction problem into a sequential decision-making process that is optimised using a reward system that penalises proposed predictions that result in a false diagnosis and preferentially favours predictions that result in the right diagnosis. The validation data is directly associated with the physical health aspects of the aircraft components. The influence of extremely rare failure prediction on the proposed method is analysed. The effectiveness of the new approach is verified by comparison with previous studies, cost-sensitive and oversampling methods. Performance was evaluated based on G-mean and false-positives rates. The proposed approach shows the superior performance of 20.3% improvement in G-mean and 97% reduction in false-positive rate.Item Open Access Handling imbalanced data for aircraft predictive maintenance using the BACHE algorithm(Elsevier, 2022-05-14) Dangut, Maren David; Skaf, Zakwan; Jennions, Ian K.Developing a prognostic model to predict an asset’s health condition is a maintenance strategy that increases asset availability and reliability through better maintenance scheduling. Therefore, developing reliable vehicle health predictive models is vital in the aerospace industry, especially considering a safety–critical system such as aircraft. However, one of the significant challenges faced in building reliable data-driven prognostic models is the imbalance dataset. Training machine-learning models using an imbalanced dataset causes classifiers to be biased towards the class with majority samples, resulting in poor predictive accuracy in data-driven models. This problem can become more challenging if the imbalance ratio is extreme and classes overlap. In this paper, a novel approach called Balanced Calibrated Hybrid Ensemble Technique (BACHE) is developed to tackle the severe imbalanced classification problem. The proposed method involves the combination of hybrid data sampling and ensemble-based learning. It uses a cascading balanced approach to transfer a class imbalance problem into a sub-problem by decomposing the original problem into a set of subproblems, each characterized by a reduced imbalance ratio. Then uses a calibrated boosting with a cost-sensitive decision tree to enhance recognition of hard-to-learn patterns, which improves the prediction of the extreme minority class. BACHE is evaluated using a real-world aircraft dataset with rare component replacement instances. Also, a comparative experiment of the proposed approach with other similar existing methods is conducted. The performance metrics used are precision, recall, G-mean, and an area under the curve. The final results show that the proposed model outperforms other similar methods. Also, it can attain an excellent performance on large, extremely imbalanced datasets.Item Open Access An integrated machine learning model for aircraft components rare failure prognostics with log-based dataset(Elsevier, 2020-05-11) Dangut, Maren David; Skaf, Zakwan; Jennions, Ian K.Predictive maintenance is increasingly advancing into the aerospace industry, and it comes with diverse prognostic health management solutions. This type of maintenance can unlock several benefits for aerospace organizations. Such as preventing unexpected equipment downtime and improving service quality. In developing data-driven predictive modelling, one of the challenges that cause model performance degradation is the data-imbalanced distribution. The extreme data imbalanced problem arises when the distribution of the classes present in the datasets is not uniform. Such that the total number of instances in a class far outnumber those of the other classes. Extremely skew data distribution can lead to irregular patterns and trends, which affects the learning of temporal features. This paper proposes a hybrid machine learning approach that blends natural language processing techniques and ensemble learning for predicting extremely rare aircraft component failure. The proposed approach is tested using a real aircraft central maintenance system log-based dataset. The dataset is characterized by extremely rare occurrences of known unscheduled component replacements. The results suggest that the proposed approach outperformed the existing imbalanced and ensemble learning methods in terms of precision, recall, and f1-score. The proposed approach is approximately 10% better than the synthetic minority oversampling technique. It was also found that by searching for patterns in the minority class exclusively, the class imbalance problem could be overcome. Hence, the model classification performance is improvedItem Open Access A rare failure detection model for aircraft predictive maintenance using a deep hybrid learning approach(Springer, 2022-03-26) Dangut, Maren David; Jennions, Ian K.; King, Steve; Skaf, ZakwanThe use of aircraft operation logs to develop a data-driven model to predict probable failures that could cause interruption poses many challenges and has yet to be fully explored. Given that aircraft is high-integrity assets, failures are exceedingly rare. Hence, the distribution of relevant log data containing prior signs will be heavily skewed towards the typical (healthy) scenario. Thus, this study presents a novel deep learning technique based on the auto-encoder and bidirectional gated recurrent unit networks to handle extremely rare failure predictions in aircraft predictive maintenance modelling. The auto-encoder is modified and trained to detect rare failures, and the result from the auto-encoder is fed into the convolutional bidirectional gated recurrent unit network to predict the next occurrence of failure. The proposed network architecture with the rescaled focal loss addresses the imbalance problem during model training. The effectiveness of the proposed method is evaluated using real-world test cases of log-based warning and failure messages obtained from the fleet database of aircraft central maintenance system records. The proposed model is compared to other similar deep learning approaches. The results indicated an 18% increase in precision, a 5% increase in recall, and a 10% increase in G-mean values. It also demonstrates reliability in anticipating rare failures within a predetermined, meaningful time frame.