CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "De Sousa, C. A. Ferreira"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Vertebrate somite development and neural patterning
    (Cranfield University, 2013-09) De Sousa, C. A. Ferreira; Tannahill, David; Toro, Carla T.
    The segmentation of the axial skeleton and peripheral nervous system involves a complex integration of multiple patterning molecules. For the latter, axon-repelling molecules in the posterior half-sclerotome are particularly important. This study built on a previously performed mouse microarray screen for novel candidate genes in the posterior half-sclerotome. Multiple candidates were selected for whole-mount in situ hybridization in chick. Two were expressed in the posterior half-sclerotome: thrombin receptor (F2R) and fibronectin leucine rich transmembrane protein-2 (Flrt2). Flrt2 was selected for siRNA-mediated knockdown and a new in ovo transfection technique for somites successfully developed. Scrambled siRNA-transfection did not affect morphogenesis, somite patterning or axon guidance. However, Flrt2 siRNA-transfection resulted in defects in notochord, dermomyotome and neural tube morphogenesis, and in the de-fasciculation and mis-targeting of spinal axons into the posterior half-sclerotome and dermomyotome. Hence, Flrt2 may be a chemorepellent for spinal axons. An unidentified peanut agglutinin (PNA)-binding glycoprotein in the posterior half-sclerotome was previously shown to repel spinal axons. In this project, the expression of a family of mucin-type O-glycosylation enzymes (which could glycosylate the PNA-binding protein) was investigated by whole-mount in situ hybridization in chick, but none was differentially expressed in the posterior half-sclerotome. One candidate for the PNA-binding glycoprotein, Presenilin1, was investigated because of previously published loss of spinal nerve segmentation in Presenilin1 mutants. However, analysis of Presenilin1-hypomorphic mutant mouse embryos showed this was not the PNA-binding molecule. Live-immunostaining for a second candidate, prolyl 4-hydroxylase, beta polypeptide (P4HB), showed its expression coincided with PNA-binding at the surface of posterior half-sclerotome cells. P4HB siRNA-transfection into somites reduced PNA binding and disrupted spinal axon segmentation and expression of a posterior sclerotome marker, Uncx4.1. Overall, these results suggest that P4HB is a strong candidate to be the key PNA-binding glycoprotein in the posterior half-sclerotome that repels spinal axons.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback