Browsing by Author "Dhesi, Mekhi"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access HySim: a tool for space-to-space hyperspectral resolved imagery(International Astronautical Federation (IAF), 2023-10-06) Felicetti, Leonard; Hobbs, Stephen; Leslie, Cameron; Rowling, Samuel; Dhesi, Mekhi; Harris, Toby; Brydon, George; Chermak, Lounis; Soori, Umair; Allworth, James; Balson, DavidThis paper introduces HySim, a novel tool addressing the need for hyperspectral space-to-space imaging simulations, vital for in-orbit spacecraft inspection missions. This tool fills the gap by enabling the generation of hyperspectral space-to-space images across various scenarios, including fly-bys, inspections, rendezvous, and proximity operations. HySim combines open-source tools to handle complex scenarios, providing versatile configuration options for imaging scenarios, camera specifications, and material properties. It accurately simulates hyperspectral images of the target scene. This paper outlines HySim's features, validation against real space-borne images, and discusses its potential applications in space missions, emphasising its role in advancing space-to-space inspection and in-orbit servicing planning.Item Open Access Towards in-orbit hyperspectral imaging of space debris(2023-01-26) Hobbs, Stephen E.; Felicetti, Leonard; Leslie, Cameron; Rowling, Samuel; Brydon, George; Dhesi, Mekhi; Harris, Toby; Chermak, Lounis; Soori, UmairSatellites are vulnerable to space debris larger than ~1 cm, but much of this debris cannot be tracked from the ground. In-orbit detection and tracking of debris is one solution to this problem. We present some steps towards achieving this, and in particular to use hyperspectral imaging to maximise the information obtained. We present current work related to hyperspectral in-orbit imaging of space debris in three areas: scenario evaluation, a reflectance database, and an image simulator. Example results are presented. Hyperspectral imaging has the potential to provide valuable additional information, such as assessments of spacecraft or debris condition and even spectral “finger-printing” of material types or use (e.g. propellant contamination). These project components are being merged to assess mission opportunities and to develop enhanced data processing methods to improve knowledge and understanding of the orbital environment.