Browsing by Author "Ding, Haoyu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Developing reliable floating solar systems on seas: a review(Elsevier, 2025-04-01) Huang, Luofeng; Elzaabalawy, Hashim; Sarhaan, Mohamed; Sherif, Ahmed; Ding, Haoyu; Ou, Binjian; Yang, Danlei; Cerik, Burak CanSolar PhotoVoltaic (PV), as a clean and affordable energy solution, has become ubiquitous around the world. In order to install enough PV coverage to meet the demand of global climate action, there has been a growing research interest in deploying solar panels on abundant sea space. However, the harsh marine environment is holding stakeholders back with safety concerns. There is a necessity to ensure the reliability of FPV on seas. To facilitate research in this area, the present review scans all Floating PV (FPV) literature related to the ocean, with a focus on reliability and risk mitigation. It starts by presenting contemporary and potentially future FPV designs for seas, inventorying both mechanical and electrical components. Accordingly, possible risks in the system are discussed with the associate mitigations suggested. Subsequently, a series of protective approaches to assess offshore wind and wave loads on FPV are introduced. This is followed by a structural integrity review for the system’s fatigue and ultimate strength, accompanied by anti-corrosion, anti-biofouling, and robust mooring concerns. Finally, essential research gaps are identified, including the modelling of numerous floating bodies on seas, mooring methodology for enormous FPV coverage, the interactions between FPV and the surrounding sea environments, and remote sensing and digital twins of the system for optimal energy efficiency and structural health. Overall, this work provides comprehensive insights into essential considerations of FPV on seas, supporting sustainable developments and long-term cost reductions in this sector.Item Open Access Nonlinear hydroelastic responses of a submerged horizontal plate under focused wave conditions: a cumulative fatigue perspective(AIP Publishing, 2025-01-31) Ding, Haoyu; Huang, Luofeng; Zang, JunMost current analytical research on the hydroelastic interaction between water waves and submerged horizontal elastic plates remains within the scope of linear theory due to the underdevelopment of mathematical methods for solving nonlinear problems. To address this gap, this work employs an approach that combines computational fluid dynamics (CFD) with computational solid mechanics (CSM) to dynamically simulate the fully coupled nonlinear hydroelastic interactions between ocean waves and a submerged horizontal plate. This research highlights the significance of nonlinear point responses of a submerged horizontal plate under focused wave conditions. A phase-based harmonic separation method (i.e., phase-decomposition method) is used to isolate wave amplitude and force harmonic components in complex wave scenarios. This approach allows for the clean delineation of individual harmonics from the total wave force by controlling the phase of incident focused waves and is for the first time applied to the response analysis of elastic structures. This paper successfully used the phase-decomposition method to separate the individual harmonics of the point displacement of a horizontal elastic plate, directly demonstrating the significance of nonlinear responses. Additionally, the impact of plate rigidity, which relates to natural frequency, on nonlinear responses is investigated. The results indicate that plates with a certain dimensionless plate rigidity will exhibit more significant nonlinear responses. By cleanly separating each individual harmonic response, this study provides new insights into the nonlinear hydroelastic responses of a horizontal plate interacting with water waves and offers a new perspective on fatigue analysis, underscoring the importance of nonlinearity for future engineering designs.