Browsing by Author "Dinmohammadi, Fateme"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Artificial intelligence in prognostics and health management of engineering systems(Elsevier, 2021-12-08) Ochella, Sunday; Shafiee, Mahmood; Dinmohammadi, FatemePrognostics and health management (PHM) has become a crucial aspect of the management of engineering systems and structures, where sensor hardware and decision support tools are deployed to detect anomalies, diagnose faults and predict remaining useful lifetime (RUL). Methodologies for PHM are either model-driven, data-driven or a fusion of both approaches. Data-driven approaches make extensive use of large-scale datasets collected from physical assets to identify underlying failure mechanisms and root causes. In recent years, many data-driven PHM models have been developed to evaluate system’s health conditions using artificial intelligence (AI) and machine learning (ML) algorithms applied to condition monitoring data. The field of AI is fast gaining acceptance in various areas of applications such as robotics, autonomous vehicles and smart devices. With advancements in the use of AI technologies in Industry 4.0, where systems consist of multiple interconnected components in a cyber–physical space, there is increasing pressure on industries to move towards more predictive and proactive maintenance practices. In this paper, a thorough state-of-the-art review of the AI techniques adopted for PHM of engineering systems is conducted. Furthermore, given that the future of inspection and maintenance will be predominantly AI-driven, the paper discusses the soft issues relating to manpower, cyber-security, standards and regulations under such a regime. The review concludes that the current systems and methodologies for maintenance will inevitably become incompatible with future designs and systems; as such, continued research into AI-driven prognostics systems is expedient as it offers the best promise of bridging the potential gap.Item Open Access Current practice and challenges towards handling uncertainty for effective outcomes in maintenance(Elsevier, 2020-02-18) Grenyer, Alex; Dinmohammadi, Fateme; Erkoyuncu, John Ahmet; Zhao, Yifan; Roy, RajkumarThe combination of viable heuristic attributes with statistical measurements presents significant challenges in industrial maintenance for complex assets under through-life service contracts. Techniques to obtain and process heuristic attributes raise numerous uncertainties which often go undefined and unmitigated. A holistic view of these uncertainties may improve decision-making capabilities and reduce maintenance costs and turnaround time. It is therefore necessary to identify and rank factors that influence uncertainties originating from challenges in the above context. This, along with an identification of who contributes to such challenges and current practice to handle them, sets the focus for this study. The influence of 32 categorised factors on uncertainty is assessed through a questionnaire completed by nine experienced maintenance managers from a leading defence company. The pedigree approach is applied to score validity of respondents’ answers according to their experience and job role to normalise scores. Results are discussed in interviews with respondents along with current practice in and ways to improve uncertainty assessment. Scores are weighted through the Analytical Hierarchy Process (AHP) in order to identify the most influential factors on uncertainty in maintenance. The analysis revealed that these include: intellectual property rights (IPR), maintainer performance, quality of information, resistance to change, stakeholder communication and technology integration. These are verified with 40 practitioners from various industrial backgrounds. From the interviews, it is deemed that a holistic view of heuristic and statistical attributes ultimately allows for more accomplished decision-making but requires trade-offs between quality and cost over the asset’s life cycle.Item Open Access Data relating to: "Current practice and challenges towards handling uncertainty for effective outcomes in maintenance" (2019)(Cranfield University, 2020-03-11 08:24) Grenyer, Alex; Dinmohammadi, Fateme; ahmet Erkoyuncu, John; Zhao, Yifan; Roy, RajkumarExcel file corresponding to data in conference paper:'Details' tab denotes participant experience and pedigree scores'Influencing factors' tab displays questionnaire results and analysis'Influencing factors w. pedigree' looks at how pedigree could be applied directly to questionnaire answers'Pairwise & AHP' shows construction and results of AHP processPowerPoint file: Embedded conference video presentation, summary of paper, comparison of approachesItem Open Access An FMEA-Based Risk Assessment Approach for Wind Turbine Systems: A Comparative Study of Onshore and Offshore(MDPI , 2014-02-10T00:00:00Z) Shafiee, Mahmood; Dinmohammadi, FatemeFailure mode and effects analysis (FMEA) has been extensively used by wind turbine assembly manufacturers for analyzing, evaluating and prioritizing potential/known failure modes. However, several limitations are associated with its practical implementation in wind farms. First, the Risk-Priority-Number (RPN) of a wind turbine system is not informative enough for wind farm managers from the perspective of criticality; second, there are variety of wind turbines with different structures and hence, it is not correct to compare the RPN values of different wind turbines with each other for prioritization purposes; and lastly, some important economical aspects such as power production losses, and the costs of logistics and transportation are not taken into account in the RPN value. In order to overcome these drawbacks, we develop a mathematical tool for risk and failure mode analysis of wind turbine systems (both onshore and offshore) by integrating the aspects of traditional FMEA and some economic considerations. Then, a quantitative comparative study is carried out using the traditional and the proposed FMEA methodologies on two same type of onshore and offshore wind turbine systems. The results show that the both systems face many of the same risks, however there are some main differences worth considering.Item Open Access A Fuzzy-FMEA risk assessment approach for offshore wind turbines(Prognostics and Health Management Society, 2013-07-23) Dinmohammadi, Fateme; Shafiee, MahmoodFailure Mode and Effects Analysis (FMEA) has been extensively used by wind turbine assembly manufacturers for risk and reliability analysis. However, several limitations are associated with its implementation in offshore wind farms: (i) the failure data gathered from SCADA system is often missing or unreliable, and hence, the assessment information of the three risk factors (i.e., severity, occurrence, and fault detection) are mainly based on experts' knowledge; (ii) it is rather difficult for experts to precisely evaluate the risk factors; (iii) the relative importance among the risk factors is not taken into consideration, and hence, the results may not necessarily represent the true risk priorities; and etc. To overcome these drawbacks and improve the effectiveness of the traditional FMEA, we develop a fuzzy-FMEA approach for risk and failure mode analysis in offshore wind turbine systems. The information obtained from the experts is expressed using fuzzy linguistics terms, and a grey theory analysis is proposed to incorporate the relative importance of the risk factors into the determination of risk priority of failure modes. The proposed approach is applied to an offshore wind turbine system with sixteen mechanical, electrical and auxiliary assemblies, and the results are compared with the traditional FMEA.Item Open Access A stochastic petri net model for O&M planning of floating offshore wind turbines(MDPI, 2021-02-20) Elusakin, Tobi; Shafiee, Mahmood; Adedipe, Tosin; Dinmohammadi, FatemeAbstract With increasing deployment of offshore wind farms further from shore and in deeper waters, the efficient and effective planning of operation and maintenance (O&M) activities has received considerable attention from wind energy developers and operators in recent years. The O&M planning of offshore wind farms is a complicated task, as it depends on many factors such as asset degradation rates, availability of resources required to perform maintenance tasks (e.g., transport vessels, service crew, spare parts, and special tools) as well as the uncertainties associated with weather and climate variability. A brief review of the literature shows that a lot of research has been conducted on optimizing the O&M schedules for fixed-bottom offshore wind turbines; however, the literature for O&M planning of floating wind farms is too limited. This paper presents a stochastic Petri network (SPN) model for O&M planning of floating offshore wind turbines (FOWTs) and their support structure components, including floating platform, moorings and anchoring system. The proposed model incorporates all interrelationships between different factors influencing O&M planning of FOWTs, including deterioration and renewal process of components within the system. Relevant data such as failure rate, mean-time-to-failure (MTTF), degradation rate, etc. are collected from the literature as well as wind energy industry databases, and then the model is tested on an NREL 5 MW reference wind turbine system mounted on an OC3-Hywind spar buoy floating platform. The results indicate that our proposed model can significantly contribute to the reduction of O&M costs in the floating offshore wind sector.