Browsing by Author "Dong, Renjie"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access Dynamic evolution of humic acids during anaerobic digestion: exploring an effective auxiliary agent for heavy metal remediation(Elsevier, 2020-10-28) Wang, Xiqing; Lyu, Tao; Dong, Renjie; Liu, Hongtao; Wu, ShubiaoInformation on the dynamic evolution of humic acid (HA) from anaerobic digestate and the potential of HA serving as an effective agent for remedying heavy metals is rather scarce. This study monitored the evolution of the structure and functional groups and metal-binding abilities of HA during chicken manure and corn stover anaerobic digestion (AD) processes. Higher increases in aromatic (41-66%) and oxygen-containing functional groups (37-45%) were observed in HA from the AD of corn stover, resulting in higher metal-binding abilities for Cu(II), Co(II), and Ni(II) than those of chicken manure AD. Moreover, HA extracted from fast (before day 12 for chicken manure and day 16 for corn stover), and slow (day 40) methane production stages performed different complexation capacities for the heavy metals. These results reveal the mechanisms of HA and heavy metal interactions, and confirm the potential of HA extracted from AD process for the remediation of heavy metals.Item Open Access Effect of reactor operation modes on mitigating antibiotic resistance genes (ARGs) and methane production from hydrothermally-pretreated pig manure(Elsevier, 2023-12-19) Guo, Chunchun; Lin, Shupeng; Lyu, Tao; Ma, Yanfang; Dong, Renjie; Liu, ShanNumerous efforts have been made to enhance the performance of anaerobic digestion (AD) for accelerating renewable energy generation, however, it remains unclear whether the intensified measures could enhance the proliferation and transmissions of antibiotic resistance genes (ARGs) in the system. This study assessed the impact of an innovative pig manure AD process, which includes hydrothermal pretreatment (HTP) and a two-stage configuration with separated acidogenic and methanogenic phases, on biomethane (CH4) production and ARGs dynamics. Results showed that HTP significantly increase CH4 production from 0.65 to 0.75 L/L/d in conventional single-stage AD to 0.82 and 0.91 L/L/d in two-stage AD. This improvement correlated with a rise in the relative abundance of Methanosarcina, a key methanogenesis microorganism. In the two-stage AD, the methanogenic stage offered an ideal environment for methanogens growth, resulting in substantially faster and higher CH4 production by about 10% compared to single-stage AD. Overall, the combined use of HTP and the two-stage AD configuration enhanced CH4 production by 40% compared to traditional single-stage AD. The abundance and diversity of ARGs were significantly reduced in the acidogenic reactors after HTP. However, the ARGs levels increased by about two times in the following methanogenesis stage and reached similar or higher levels than in single stage AD. The erm(F), erm(G), ant(6)-Ia, tet(W), mef(A) and erm(B) were the six main ARGs with significant differences in relative abundances in various treatments. The two-stage AD mode could better remove sul2, but it also had a rebound which elevated the risk of ARGs to the environment and human health. Network analysis identified pH and TVFAs as critical factors driving microbial communities and ARG proliferation in the new AD process. With the results, this study offers valuable insights into the trade-offs between AD performance enhancement and ARG-related risks, pinpointing essential areas for future research and practical improvements.Item Open Access Effects of nanobubble water on digestate soaking hydrolysis of rice straw(Elsevier, 2024-05-24) Wang, Enzhen; Xing, Fan; Chen, Penghui; Zheng, Yonghui; Lyu, Tao; Li, Xin; Xiong, Wei; Li, Gang; Dong, Renjie; Guo, JianbinThis study investigated the performance of combined nanobubble water (NW) and digestate in the soaking hydrolysis process. Two types of NW (CO2NW and O2NW) with digestate were used to soak rice straw for 1, 2, 3, 5, and 7 days. During soaking process, the volatile fatty acids (VFA) concentration in the treatment with O2NW and digestate for 3 days (O2NW-3 d) reached 7179.5 mg-HAc/L. Moreover, the highest specific methane yield (SMY) obtained in this treatment could reach 336.7 NmL/gVS. Although the addition of NW did not significantly increase SMY from digestate soaking, NW could accelerate the rate of methane production and reduce digestion time of T80. The enrichment of Enterobacter in the soaking process was observed when using CO2NW and O2NW as soaking solutions which played important roles in VFA production. This study provides a new insight into environment-friendly enhanced crop straw pretreatment, combining NW and digestate soaking hydrolysis.Item Open Access Mechanisms of genuine humic acid evolution and its dynamic interaction with methane production in anaerobic digestion processes(Elsevier, 2020-10-14) Wang, Xiqing; Muhmood, Atif; Lyu, Tao; Dong, Renjie; Liu, Hongtao; Wu, ShubiaoHumic acid (HA), a byproduct formed during the biological conversion of organic matter into biogas in the anaerobic digestion (AD) process, contains complex structures and redox functions. However, the evolution mechanism of HA and its interaction with CH4 production during the AD process have not been fully explored, particularly with respect to various substrates and temperature conditions. In this study, we investigated the evolutionary dynamics of the structure and function of genuine HA that naturally formed in the AD processes of chicken manure and corn stover under mesophilic (37 °C) and thermophilic (55 °C) conditions. The results demonstrated that the HA evolution mechanisms in AD of chicken manure and corn stover have different pathways. The AD of core stover showed higher degree of aromaticity (41.2–66.7% and 45.3–68.4% for mesophilic and thermophilic respectively) and humification index (1.5–4.2 and 2.8–4.5 for mesophilic and thermophilic respectively) than those (28.3–45.3% and 30.2–54.5% of aromaticity and 0.6–1.2 and 1.3–3.7 of humification index) in AD of chicken manure. The results from HSQC NMR spectroscopy and 2D-COS-FTIR spectroscopy demonstrated an accelerating effect of the higher temperature on the evolution of HA through humification. Moreover, the concurrent decomposition and re-polymerization of HA during both AD processes, resulting in positive and negative effects on CH4 production in the fast and slow CH4 production stages, respectively. The dynamic interaction was due to variations in the electron transferring ability and structure of the formed HA. The results could not only advance our understanding of the mechanisms of HA evolution and its interaction with the performance of AD process, but also support further research toward improving AD performance by regulating HA formation and transformation.Item Open Access Metagenomic analysis reveals metabolic mechanism of enhancing lignocellulosic anaerobic digestion mediated by CO2/O2-nanobubble water(Elsevier, 2024-12-01) Wang, Enzhen; Sun, Hui; Xing, Fan; Zheng, Yonghui; Chen, Penghui; Lyu, Tao; Liu, Ruotong; Li, Xin; Dong, Renjie; Guo, JianbinNanobubble water (NW) has been reported to enhance anaerobic digestion (AD), but its influence on the metabolic pathways of microorganisms remains unclear. In this study, the specific methane yields of rice straw in the CO2NW and O2NW treatments increased by 6.9% and 18.3%, respectively. The electron transport system (ETS) and coenzyme F420 activities were enhanced by the addition of NW. Metagenomic analysis showed that the abundances of most enzymes in the acidification were significantly increased by both CO2NW and O2NW. Regarding methanogenesis, CO2NW promoted the expression of genes encoding enzymes of hydrogenotrophic methanogenesis, while O2NW stimulated both the acetoclastic and hydrogenotrophic methanogenesis. With the addition of O2NW, the expressions of modules related to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation were enhanced, resulting in increased ATP production. This study provided fundamental evidence of the metabolic pathways of microorganisms mediated by NW at each stage of AD.Item Open Access Process mechanisms of nanobubble technology enhanced hydrolytic acidification of anaerobic digestion of lignocellulosic biomass(Elsevier, 2023-12-21) Zhu, Yali; Lyu, Tao; Li, Daoyu; Zhang, Zongqin; Guo, Jianbin; Li, Xin; Xiong, Wei; Dong, Renjie; Wang, SiqiThis study explored the efficiency of CO2-, N2-, and H2- nanobubble treatment in anaerobic digestion (AD) of rice straw, with a focus on the processes and metabolic pathways of hydrolytic acidification, and revealed the underlying mechanisms. Mechanistic investigations revealed that nanobubbles, particularly CO2 nanobubbles, significantly increased the degradation of amorphous cellulose, resulting in higher levels of soluble carbohydrates (6.27 % – 11.13 %), VFAs (4.39 % – 24.50 %), and a remarkable cumulative H2 yield (74 – 94 times) Microbial community analysis indicated that the CO2 nanobubble promoted the growth of acidifying bacterial communities, such as Mobilitalea, unclassified_f_Lachnospiraceae, and Bacteroides. This indicates that the introduction of CO2 nanobubbles improved the total abundance of predicted functional enzymes were increased by 14 %, resulting in the production of more easily degradable intermediates. Based on the analysis of total methane production and kinetic analysis, it can be concluded that nanobubble addition enhanced methane production levels of 4.22 %−7.79 % with lower lag time (λ) (0.88–1.06 day) compared to the control group (1.09 day). The results also elucidated changes in relative enzymatic activities involved in the bioconversion of cellulose and hemicellulose during the hydrolysis stage with nanobubble treatment. This work is more beneficial for understanding the promoting effect and mechanism of nanobubbles on AD, facilitating the more precise application of nanobubble technology in the field of renewable energy.Item Open Access Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion(Elsevier, 2021-10-07) Wang, Xiqing; Lyu, Tao; Dong, Renjie; Wu, ShubiaoHumic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance.