Browsing by Author "Donoghue, J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components(Elsevier, 2016-11-08) Colegrove, Paul A.; Donoghue, J.; Martina, Filomeno; Gu, Jianglong; Prangnell, P. B.; Honnige, JanMany additively manufactured (AM) materials have properties that are inferior to their wrought counterparts, which impedes industrial implementation of the technology. Bulk deformation methods, such as rolling, applied in-process during AM can provide significant benefits including reducing residual stresses and distortion, and grain refinement. The latter is particularly beneficial for titanium alloys where the normally seen large prior β grains are converted to a fine equiaxed structure – giving isotropic mechanical properties that can be better than the wrought material. The technique is also beneficial for aluminium alloys where it enables a dramatic reduction in porosity and improved ductility.Item Open Access The effectiveness of combining rolling deformation with wire-arc additive manufacture on β-Grain refinement and texture modification in Ti-6Al-4V(Elsevier, 2016-02-08) Donoghue, J.; Anthonysamy, A. A.; Martina, Filomeno; Colegrove, Paul A.; Williams, Stewart W.; Prangnell, P. B.In Additive Manufacture (AM), with the widely used titanium alloy Ti–6Al–4V, the solidification conditions typically result in undesirable, coarse-columnar, primary β grain structures. This can result in a strong texture and mechanical anisotropy in AM components. Here, we have investigated the efficacy of a new approach to promote β grain refinement in Wire–Arc Additive Manufacture (WAAM) of large scale parts, which combines a rolling step sequentially with layer deposition. It has been found that when applied in-process, to each added layer, only a surprisingly low level of deformation is required to greatly reduce the β grain size. From EBSD analysis of the rolling strain distribution in each layer and reconstruction of the prior β grain structure, it has been demonstrated that the normally coarse centimetre scale columnar β grain structure could be refined down to < 100 μm. Moreover, in the process both the β and α phase textures were substantially weakened to close to random. It is postulated that the deformation step causes new β orientations to develop, through local heterogeneities in the deformation structure, which act as nuclei during the α → β transformation that occurs as each layer is re-heated by the subsequent deposition pass.