Browsing by Author "Dubanchet, Vincent"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access DeepLO: Multi-projection deep LIDAR odometry for space orbital robotics rendezvous relative navigation(Elsevier, 2020-07-30) Kechagias-Stamatis, Odysseas; Aouf, Nabil; Dubanchet, Vincent; Richardson, Mark A.This work proposes a new Light Detection and Ranging (LIDAR) based navigation architecture that is appropriate for uncooperative relative robotic space navigation applications. In contrast to current solutions that exploit 3D LIDAR data, our architecture suggests a Deep Recurrent Convolutional Neural Network (DRCNN) that exploits multi-projected imagery of the acquired 3D LIDAR data. Advantages of the proposed DRCNN are; an effective feature representation facilitated by the Convolutional Neural Network module within DRCNN, a robust modeling of the navigation dynamics due to the Recurrent Neural Network incorporated in the DRCNN, and a low processing time. Our trials evaluate several current state-of-the-art space navigation methods on various simulated but credible scenarios that involve a satellite model developed by Thales Alenia Space (France). Additionally, we evaluate real satellite LIDAR data acquired in our lab. Results demonstrate that the proposed architecture, although trained solely on simulated data, is highly adaptable and is more appealing compared to current algorithms on both simulated and real LIDAR data scenarios affording better odometry accuracy at lower computational requirements.Item Open Access Evaluating 3D local descriptors and recursive filtering schemes for LIDAR based uncooperative relative space navigation(Wiley, 2019-09-05) Kechagias-Stamatis, Odysseas; Aouf, Nabil; Dubanchet, VincentWe propose a light detection and ranging (LIDAR)‐based relative navigation scheme that is appropriate for uncooperative relative space navigation applications. Our technique combines the encoding power of the three‐dimensional (3D) local descriptors that are matched exploiting a correspondence grouping scheme, with the robust rigid transformation estimation capability of the proposed adaptive recursive filtering techniques. Trials evaluate several current state‐of‐the‐art 3D local descriptors and recursive filtering techniques on a number of both real and simulated scenarios that involve various space objects including satellites and asteroids. Results demonstrate that the proposed architecture affords a 50% odometry accuracy improvement over current solutions, while also affording a low computational burden. From our trials we conclude that the 3D descriptor histogram of distances short (HoD‐S) combined with the adaptive αβ filtering poses the most appealing combination for the majority of the scenarios evaluated, as it combines high quality odometry with a low processing burden.Item Open Access Robust on-manifold optimization for uncooperative space relative navigation with a single camera(AIAA, 2021-03-31) Rondao, Duarte; Aouf, Nabil; Richardson, Mark A.; Dubanchet, VincentOptical cameras are gaining popularity as the suitable sensor for relative navigation in space due to their attractive sizing, power, and cost properties when compared with conventional flight hardware or costly laser-based systems. However, a camera cannot infer depth information on its own, which is often solved by introducing complementary sensors or a second camera. In this paper, an innovative model-based approach is demonstrated to estimate the six-dimensional pose of a target relative to the chaser spacecraft using solely a monocular setup. The observed facet of the target is tackled as a classification problem, where the three-dimensional shape is learned offline using Gaussian mixture modeling. The estimate is refined by minimizing two different robust loss functions based on local feature correspondences. The resulting pseudomeasurements are processed and fused with an extended Kalman filter. The entire optimization framework is designed to operate directly on the SE(3) manifold, uncoupling the process and measurement models from the global attitude state representation. It is validated on realistic synthetic and laboratory datasets of a rendezvous trajectory with the complex spacecraft Envisat, demonstrating estimation of the relative pose with high accuracy over full tumbling motion. Further evaluation is performed on the open-source SPEED dataset.