CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Elarnaut, F."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Confocal energy-dispersive X-ray diffraction tomography employing a conical shell beam
    (Optical Society of America, 2019-07-01) Dicken, Anthony; Evans, J. Paul O.; Rogers, Keith; Prokopiou, Danae; Godber, Simon; Elarnaut, F.; Shevchuk, Alex; Downes, D.; Wilson, M.
    We introduce a new high-energy X-ray diffraction tomography technique for volumetric materials characterization. In this method, a conical shell beam is raster scanned through the samples. A central aperture optically couples the diffracted flux from the samples onto a pixelated energy-resolving detector. Snapshot measurements taken during the scan enable the construction of depth-resolved dark-field section images. The calculation of dspacing values enables the mapping of material phase in a volumetric image. We demonstrate our technique using five ~15 mm thick, axially separated samples placed within a polymer tray of the type used routinely in airport security stations. Our method has broad analytical utility due to scalability in both scan size and X-ray energy. Additional application areas include medical diagnostics, materials science, and process control
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Sparse interleaved sampling for high resolution focal construct geometry X-ray tomography
    (Optical Society of America, 2023-04-24) Evans, J. Paul O.; Elarnaut, F.; Downes, D.; Lee, W. K.; Arnold, Emily; Rogers, Keith
    We demonstrate interleaved sampling by multiplexing conical subshells within the tomosynthesis and raster scanning a phantom through a 150 kV shell X-ray beam. Each view comprises pixels sampled on a regular 1 mm grid, which is then upscaled by padding with null pixels before tomosynthesis. We show that upscaled views comprising 1% sample pixels and 99% null pixels increase the contrast transfer function (CTF) computed from constructed optical sections from approximately 0.6 line pairs/mm to 3 line pairs/mm. The driver of our method is to complement work concerning the application of conical shell beams to the measurement of diffracted photons for materials identification. Our approach is relevant to time-critical, and dose-sensitive analytical scanning applications in security screening, process control and medical imaging.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    X-ray absorption tomography employing a conical shell beam
    (Optical Society of America, 2016-12-12) Evans, J. Paul O.; Godber, S. X.; Elarnaut, F.; Downes, D.; Dicken, A. J.; Rogers, Keith
    We demonstrate depth-resolved absorption imaging by scanning an object through a conical shell of X-rays. We measure ring shaped projections and apply tomosynthesis to extract optical sections at different axial focal plane positions. Three-dimensional objects have been imaged to validate our theoretical treatment. The novel principle of our method is scalable with respect to both scan size and X-ray energy. A driver for this work is to complement previously reported methods concerning the measurement of diffracted X-rays for structural analysis. The prospect of employing conical shell beams to combine both absorption and diffraction modalities would provide enhanced analytical utility and has many potential applications in security screening, process control and diagnostic imaging.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback