Browsing by Author "Evans, J. Paul O."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter(Nature Publishing Group, 2016-07-01) Dicken, A. J.; Evans, J. Paul O.; Rogers, Keith; Stone, N.; Greenwood, Charlene; Godber, S. X.; Clement, J. G.; Lyburn, Iain Douglas; Martin, R. M.; Zioupos, PeterOsteoporotic fractures present a significant social and economic burden, which is set to rise commensurately with the aging population. Greater understanding of the physicochemical differences between osteoporotic and normal conditions will facilitate the development of diagnostic technologies with increased performance and treatments with increased efficacy. Using coherent X-ray scattering we have evaluated a population of 108 ex vivo human bone samples comprised of non-fracture and fracture groups. Principal component fed linear discriminant analysis was used to develop a classification model to discern each condition resulting in a sensitivity and specificity of 93% and 91%, respectively. Evaluating the coherent X-ray scatter differences from each condition supports the hypothesis that a causal physicochemical change has occurred in the fracture group. This work is a critical step along the path towards developing an in vivo diagnostic tool for fracture risk prediction.Item Open Access Combined X-ray diffraction and absorption tomography using a conical shell beam(2019-07-15) Shevchuk, Alex; Evans, J. Paul O.; Dicken, A. J.; Elarnaut, D.; Downes, D.; Godber, S. X.; Rogers, Keith D.We combine diffraction and absorption tomography by raster scanning samples through a hollow cone of pseudo monochromatic X-rays with a mean energy of 58.4 keV. A single image intensifier takes 90x90 (x,y) snapshots during the scan. We demonstrate a proof-of-principle of our technique using a heterogeneous three-dimensional (x,y,z) phantom (90x90x170 mm3) comprised of different material phases, i.e., copper and sodium chlorate. Each snapshot enables the simultaneous measurement of absorption contrast and diffracted flux. The axial resolution was ~1 mm along the (x,y) orthogonal scan directions and ~7 mm along the z-axis. The tomosynthesis of diffracted flux measurements enable the calculation of d-spacing values with ~0.1 Å full width at half maximum (FWHM) at ~2 Å. Thus the identified materials may be color-coded in the absorption optical sections. Characterization of specific material phases is of particular interest in security screening for the identification of narcotics and a wide range of homemade explosives concealed within complex “everyday objects.” Other potential application areas include process control and biological imaging.Item Open Access Confocal energy-dispersive X-ray diffraction tomography employing a conical shell beam(Optical Society of America, 2019-07-01) Dicken, Anthony; Evans, J. Paul O.; Rogers, Keith; Prokopiou, Danae; Godber, Simon; Elarnaut, F.; Shevchuk, Alex; Downes, D.; Wilson, M.We introduce a new high-energy X-ray diffraction tomography technique for volumetric materials characterization. In this method, a conical shell beam is raster scanned through the samples. A central aperture optically couples the diffracted flux from the samples onto a pixelated energy-resolving detector. Snapshot measurements taken during the scan enable the construction of depth-resolved dark-field section images. The calculation of dspacing values enables the mapping of material phase in a volumetric image. We demonstrate our technique using five ~15 mm thick, axially separated samples placed within a polymer tray of the type used routinely in airport security stations. Our method has broad analytical utility due to scalability in both scan size and X-ray energy. Additional application areas include medical diagnostics, materials science, and process controlItem Open Access Conical shell X-ray beam tomosynthesis and micro-computed tomography for microarchitectural characterisation(Springer Nature, 2023-12-06) Arnold, Emily; Elarnaut, Farid; Downes, David; Evans, J. Paul O.; Greenwood, Charlene; Rogers, Keith D.Bone quality is commonly used to diagnose bone diseases such as osteoporosis, with many studies focusing on microarchitecture for fracture prediction. In this study a bovine distal femur was imaged using both micro-computed tomography (µCT) and tomosynthesis using focal construct geometry (FCG) for comparison of microarchitectural parameters. Six regions of interest (ROIs) were compared between the two imaging modalities, with both global and adaptive methods used to binarize the images. FCG images were downsampled to the same pixel size as the µCT images. Bone morphometrics were determined using BoneJ, for each imaging modality, binarization technique and ROI. Bone area/total area was found to have few significant differences between FCG and µCT (p < 0.05 for two of six ROIs). Fractal Dimension had only one significant difference (p < 0.05 for one of six ROIs) between µCT and downsampled FCG (where pixel size was equalized). Trabecular thickness and trabecular spacing were observed to follow trends as observed for the corresponding µCT images, although many absolute values were significantly different (p < 0.05 for between one and six ROIs depending on image types used). This study demonstrates the utility of tomosynthesis for measurement of microarchitectural morphometrics.Item Open Access Depth resolved snapshot energy-dispersive X-ray diffraction using a conical shell beam(Optical Society of America, 2017-08-23) Dicken, A. J.; Evans, J. Paul O.; Rogers, Keith; Prokopiou, Danae; Godber, S. X.; Wilson, M.We demonstrate a novel imaging architecture to collect range encoded diffraction patterns from overlapping samples in a single conical shell projection. The patterns were measured in the dark area encompassed by the beam via a centrally positioned aperture optically coupled to a pixelated energy-resolving detector. We show that a single exposure measurement of 0.3 mAs enables d-spacing values to be calculated. The axial positions of the samples were not required and the resultant measurements were robust in the presence of crystallographic textures. Our results demonstrate rapid volumetric materials characterization and the potential for a direct imaging method, which is of great relevance to applications in medicine, non-destructive testing and security screening.Item Open Access Fracture toughness of the cancellous bone of FNF femoral heads in relation to its microarchitecture(European Society of Biomechanics, 2016-07) Greenwood, Charlene; Clements, J. G.; Dicken, A. J.; Evans, J. Paul O.; Lyburn, Iain Douglas; Martin, R. M.; Rogers, Keith; Stone, N.; Adams, G.; Zioupos, PeterThis study considers the relationship between microarchitecture and mechanical properties for cancellous bone specimens collected from a cohort of patients who had suffered fractured necks of femur. OP is an acute skeletal condition with huge socioeconomic impact [1] and it is associated with changes in both bone quantity and quality [2], which affect greatly the strength and toughness of the tissue [3].Item Open Access Investigating pair distribution function use in analysis of nanocrystalline hydroxyapatite and carbonate-substituted hydroxyapatite(International Union of Crystallography, 2022-04-14) Arnold, Emily; Keeble, Dean S.; Evans, J. Paul O.; Greenwood, Charlene; Rogers, Keith D.Hydroxyapatite (HA) is a complex material, which is often nanocrystalline when found within a biological setting. This work has directly compared the structural characteristics derived from data collected using a conventional laboratory-based X-ray diffractometer with those collected from a dedicated pair distribution function (PDF) beamline at Diamond Light Source. In particular, the application of PDF analysis methods to carbonated HA is evaluated. 20 synthetic samples were measured using both X-ray diffraction (XRD) and PDFs. Both Rietveld refinement (of laboratory XRD data) and real-space refinement (of PDF data) were used to analyse all samples. The results of Rietveld and real-space refinements were compared to evaluate their application to crystalline and nanocrystalline hydroxyapatite. Significant relationships were observed between real-space refinement parameters and increasing carbonate substitution. Understanding the local order of synthetic hydroxyapatite can benefit several fields, including both biomedical and clinical settings.Item Open Access Sparse interleaved sampling for high resolution focal construct geometry X-ray tomography(Optical Society of America, 2023-04-24) Evans, J. Paul O.; Elarnaut, F.; Downes, D.; Lee, W. K.; Arnold, Emily; Rogers, KeithWe demonstrate interleaved sampling by multiplexing conical subshells within the tomosynthesis and raster scanning a phantom through a 150 kV shell X-ray beam. Each view comprises pixels sampled on a regular 1 mm grid, which is then upscaled by padding with null pixels before tomosynthesis. We show that upscaled views comprising 1% sample pixels and 99% null pixels increase the contrast transfer function (CTF) computed from constructed optical sections from approximately 0.6 line pairs/mm to 3 line pairs/mm. The driver of our method is to complement work concerning the application of conical shell beams to the measurement of diffracted photons for materials identification. Our approach is relevant to time-critical, and dose-sensitive analytical scanning applications in security screening, process control and medical imaging.Item Open Access X-ray absorption tomography employing a conical shell beam(Optical Society of America, 2016-12-12) Evans, J. Paul O.; Godber, S. X.; Elarnaut, F.; Downes, D.; Dicken, A. J.; Rogers, KeithWe demonstrate depth-resolved absorption imaging by scanning an object through a conical shell of X-rays. We measure ring shaped projections and apply tomosynthesis to extract optical sections at different axial focal plane positions. Three-dimensional objects have been imaged to validate our theoretical treatment. The novel principle of our method is scalable with respect to both scan size and X-ray energy. A driver for this work is to complement previously reported methods concerning the measurement of diffracted X-rays for structural analysis. The prospect of employing conical shell beams to combine both absorption and diffraction modalities would provide enhanced analytical utility and has many potential applications in security screening, process control and diagnostic imaging.