CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Falconer, Ruth"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    ItemOpen Access
    Bacterial distribution in soil microhabitats at different spatial scales
    (Cranfield University, 2018-08-08 16:11) Otten, Wilfred; Eickhorst, Thilo; Juyal, Archana; Falconer, Ruth; Hapca, Simona; Schmidt, Hannes; C Baveye, Philippe
    The data underpin the results described in the Geoderma paper by Juyal et al (2018) https://doi.org/10.1016/j.geoderma.2018.07.031 entitled 'Combination of techniques to quantify the distribution of bacteria in their soil microhabitats at different spatial scales'. The data are represented in an Excel file and show counts of bacteria in individual sections of soil blocks and their corresponding pore geometry as determined by Xray CT at three different spatial scales. The data underpin the summary data described in the paper where a detailed method description is also provided.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Combination of techniques to quantify the distribution of bacteria in their soil microhabitats at different spatial scales
    (Elsevier, 2018-04-08) Juyal, Archana; Otten, Wilfred; Falconer, Ruth; Hapca, Simona; Schmidt, Hannes; Baveye, Philippe C.; Eickhorst, Thilo
    To address a number of issues of great societal concern at the moment, like the sequestration of carbon, information is direly needed about interactions between soil architecture and microbial dynamics. Unfortunately, soils are extremely complex, heterogeneous systems comprising highly variable and dynamic micro-habitats that have significant impacts on the growth and activity of inhabiting microbiota. Data remain scarce on the influence of soil physical parameters characterizing the pore space on the distribution and diversity of bacteria. In this context, the objective of the research described in this article was to develop a method where X-ray microtomography, to characterize the soil architecture, is combined with fluorescence microscopy to visualize and quantify bacterial distributions in resin-impregnated soil sections. The influence of pore geometry (at a resolution of 13.4 μm) on the distribution of Pseudomonas fluorescens was analysed at macro- (5.2 mm × 5.2 mm), meso- (1 mm × 1 mm) and microscales (0.2 mm × 0.2 mm) based on an experimental setup simulating different soil architectures. The cell density of P. fluorescens was 5.59 x 107(SE 2.6 x 106) cells g−1 soil in 1–2 mm and 5.84 x 107(SE 2.4 x 106) cells g−1 in 2–4 mm size aggregates soil. Solid-pore interfaces influenced bacterial distribution at micro- and macroscale, whereas the effect of soil porosity on bacterial distribution varied according to three observation scales in different soil architectures. The influence of soil porosity on the distribution of bacteria in different soil architectures was observed mainly at the macroscale, relative to micro- and mesoscales. Experimental data suggest that the effect of pore geometry on the distribution of bacteria varied with the spatial scale, thus highlighting the need to consider an “appropriate spatial scale” to understand the factors that regulate the distribution of microbial communities in soils. The results obtained to date also indicate that the proposed method is a significant step towards a full mechanistic understanding of microbial dynamics in structured soils.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Control of pore geometry in soil microcosms and its effect on the growth and spread of Pseudomonas and Bacillus sp.
    (Frontiers, 2018-07-13) Juyal, Archana; Eickhorst, Thilo; Falconer, Ruth; Baveye, Philippe C.; Spiers, Andrew; Otten, Wilfred
    Simplified experimental systems, often referred to as microcosms, have played a central role in the development of modern ecological thinking on issues ranging from competitive exclusion to examination of spatial resources and competition mechanisms, with important model-driven insights to the field. It is widely recognized that soil architecture is the key driver of biological and physical processes underpinning ecosystem services, and the role of soil architecture and soil physical conditions is receiving growing interest. The difficulty to capture the architectural heterogeneity in microcosms means that we typically disrupt physical architecture when collecting soils. We then use surrogate measures of soil architecture such as aggregate size distribution and bulk-density, in an attempt to recreate conditions encountered in the field. These bulk-measures are too crude and do not describe the heterogeneity at microscopic scales where microorganisms operate. In the current paper we therefore ask the following questions: (i) To what extent can we control the pore geometry at microscopic scales in microcosm studies through manipulation of common variables such as density and aggregate size?; (ii) What is the effect of pore geometry on the growth and spread dynamics of bacteria following introduction into soil? To answer these questions, we focus on Pseudomonas sp. and Bacillus sp. We study the growth of populations introduced in replicated microcosms packed at densities ranging from 1.2 to 1.6 g cm−3, as well as packed with different aggregate sizes at identical bulk-density. We use X-ray CT and show how pore geometrical properties at microbial scales such as connectivity and solid-pore interface area, are affected by the way we prepare microcosms. At a bulk-density of 1.6 g cm−3 the average number of Pseudomonas was 63% lower than at a bulk-density of 1.3 g cm−3. For Bacillus this reduction was 66%. Depending on the physical conditions, bacteria in half the samples took between 1.62 and 9.22 days to spread 1.5 cm. Bacillus did spread faster than Pseudomonas and both did spread faster at a lower bulk-density. Our results highlight the importance that soil physical properties be considered in greater detail in soil microbiological studies than is currently the case.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback