Browsing by Author "Fan, Wei"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Bactericidal efficiency and photochemical mechanisms of micro/nano bubble–enhanced visible light photocatalytic water disinfection(Elsevier, 2021-08-08) Fan, Wei; Cui, Jingyu; Li, Qi; Huo, Yang; Xiao, Dan; Yang, Xia; Yu, Hongbin; Wang, Chunliang; Jarvis, Peter; Lyu, Tao; Huo, MingxinMicrobial contamination of water in the form of highly-resistant bacterial spores can cause a long-term risk of waterborne disease. Advanced photocatalysis has become an effective approach to inactivate bacterial spores due to its potential for efficient solar energy conversion alongside reduced formation of disinfection by-products. However, the overall efficiency of the process still requires significant improvements. Here, we proposed and evaluated a novel visible light photocatalytic water disinfection technology by its close coupling with micro/nano bubbles (MNBs). The inactivation rate constant of Bacillus subtilis spores reached 1.28 h−1, which was 5.6 times higher than that observed for treatment without MNBs. The superior performance for the progressive destruction of spores’ cells during the treatment was confirmed by transmission electron microscopy (TEM) and excitation-emission matrix (EEM) spectra determination. Experiments using scavengers of reactive oxygen species (ROSs) revealed that H2O2 and •OH were the primary active species responsible for the inactivation of spores. The effective supply of oxygen from air MNBs helped accelerate the hole oxidation of H2O2 on the photocatalyst (i.e. Ag/TiO2). In addition, the interfacial photoelectric effect from the MNBs was also confirmed to contribute to the spore inactivation. Specifically, MNBs induced strong light scattering, consequently increasing the optical path length in the photocatalysis medium by 54.8% at 700nm and enhancing light adsorption of the photocatalyst. The non-uniformities in dielectricity led to a high-degree of heterogeneity of the electric field, which triggered the formation of a region of enhanced light intensity which ultimately promoted the photocatalytic reaction. Overall, this study provided new insights on the mechanisms of photocatalysis coupled with MNB technology for advanced water treatment.Item Open Access Exploring a chemical input free advanced oxidation process based on nanobubble technology to treat organic micropollutants(Elsevier, 2023-11-04) Wang, Bangguo; Wang, Lijing; Cen, Wenxi; Lyu, Tao; Jarvis, Peter; Zhang, Yang; Zhang, Yuanxun; Han, Yinghui; Wang, Lei; Pan, Gang; Zhang, Kaili; Fan, WeiAdvanced oxidation processes (AOPs) are increasingly applied in water and wastewater treatment, but their energy consumption and chemical use may hinder their further implementation in a changing world. This study investigated the feasibility and mechanisms involved in a chemical-free nanobubble-based AOP for treating organic micropollutants in both synthetic and real water matrices. The removal efficiency of the model micropollutant Rhodamine B (RhB) by oxygen nanobubble AOP (98%) was significantly higher than for air (73%) and nitrogen nanobubbles (69%). The treatment performance was not significantly affected by pH (3–10) and the presence of ions (Ca2+, Mg2+, HCO3−, and Cl−). Although a higher initial concentration of RhB (10 mg/L) led to a slower treatment process when compared to lower initial concentrations (0.1 and 1 mg/L), the final removal performance reached a similar level (∼98%) between 100 and 500 min. The coexistence of organic matter (humic acid, HA) resulted in a much lower reduction (70%) in the RhB removal rate. Both qualitative and quantitative analysis of reactive oxygen species (ROSs) using fluorescent probe, electron spin resonance, and quenching experiments demonstrated that the contributions of ROSs in RhB degradation followed the order: hydroxyl radical (•OH) > superoxide radical (•O2−) > singlet oxygen (1O2). The cascade degradation reactions for RhB were identified which involve N-de-ethylation, hydroxylation, chromophore cleavage, opening-ring and final mineralisation processes. Moreover, the treatment of real water samples spiked with RhB, including natural lake water and secondary effluent from a sewage works, still showed considerable removals of the dye (75.3%–90.8%), supporting its practical feasibility. Overall, the results benefit future research and application of chemical free nanobubble-based AOP for water and wastewater treatment.Item Open Access An integrated approach using ozone nanobubble and cyclodextrin inclusion complexation to enhance the removal of micropollutants(Elsevier, 2021-03-11) Fan, Wei; An, Wengang; Huo, Mingxin; Xiao, Dan; Lyu, Tao; Cui, JingyuOzone (O3) has been widely used for the elimination of recalcitrant micropollutants in aqueous environments, due to its strong oxidation ability. However, the utilization efficiency of O3 is constrained by its low solubility and short half-life during the treatment process. Herein, an integrated approach, using nanobubble technology and micro-environmental chemistry within cyclodextrin inclusion cavities, was studied in order to enhance the reactivity of ozonisation. Compared with traditional macrobubble aeration with O3 in water, nanobubble aeration achieved 1.7 times higher solubility of O3, and increased the mass transfer coefficient 4.7 times. Moreover, the addition of hydroxypropyl-β-cyclodextrin (HPβCD) further increased the stability of O3 through formation of an inclusion complex in its molecule-specific cavity. At a HPβCD:O3 molar ratio of 10:1, the lifespan of O3 reached 18 times longer than in a HPβCD-free O3 solution. Such approach accelerated the removal efficiency of the model micropollutant, 4-chlorophenol by 6.9 times, compared with conventional macrobubble ozonation. Examination of the HPβCD inclusion complex by UV-visible spectroscopy and Nuclear Magnetic Resonance analyses revealed that both O3 and 4-chlorophenol entered the HPβCD cavity, and Benesi-Hildebrand plots indicated a 1:1 stoichiometry of the host and guest compounds. Additionally, molecular docking simulations were conducted in order to confirm the formation of a ternary complex of HPβCD:4-chlorophenol:O3 and to determine the optimal inclusion mode. With these results, our study highlights the viability of the proposed integrated approach to enhance the ozonation of organic micropollutantsItem Open Access A modelling approach to explore the optimum bubble size for micro-nanobubble aeration(Elsevier, 2022-11-16) Fan, Wei; Li, Yuhang; Lyu, Tao; Yu, Jia'ao; Chen, Zhen; Jarvis, Peter; Huo, Yang; Xiao, Dan; Huo, MingxinBubble aeration has been widely applied in water/wastewater treatment, however its low gas utilization rate results in high energy consumption. Application of micro-nanobubbles (MNB) has emerged as a process with the potential to significantly increase gas utilisation due to their high relative surface area and high gas-liquid mass transfer efficiency. In this study, we demonstrate through calibrated models that MNB of an optimum bubble size can shrink and burst at or below the water surface enabling (1) all encapsulated gas to thoroughly dissolve in water, and (2) the bursting of nanobubbles to potentially generate free radicals. Through the understanding of MNB dimensional characteristics and bubble behaviour in water, a dynamic model that integrated force balance (i.e. buoyancy force, gravity, drag force, Basset force and virtual mass force), and mass transfer was developed to describe the rising velocity and radius variation of MNB along its upward trajectory. Unlike for conventional millimetre-sized bubbles, intensive gas dissolution of MNBs led to radius reduction for small bubbles, while a large initial radius triggers bubble swelling. The initial water depth was also crucial, where greater depth could drive the potential for bubble shrinkage so that they were more liable to contract. For example, the optimum bubble size of air (42–194 μm) and oxygen (127–470 μm) MNB that could achieve complete gas transfer (100% gas utilisation) for a range of specific water depths (0.5–10 m) were calculated. The modelling results for microbubbles (10–530 μm) were well validated by the experimental data (R2>0.85). However, the validation of the modelling results for nanobubble (<1 μm) aeration requires further study due to a lack of available empirical data. In this study, the proposed model and analysis provided new insights into understanding bubble dynamics in water and offered fundamental guidance for practitioners looking to upgrade bubble aeration system.Item Open Access Nanobubble aeration enhanced wastewater treatment and bioenergy generation in constructed wetlands coupled with microbial fuel cells(Elsevier, 2023-06-29) Lyu, Tao; Wu, Yuncheng; Zhang, Yang; Fan, Wei; Wu, Shubiao; Mortimer, Robert J. G.; Pan, GangArtificial aeration is a widely used approach in wastewater treatment to enhance the removal of pollutants, however, traditional aeration techniques have been challenging due to the low oxygen transfer rate (OTR). Nanobubble aeration has emerged as a promising technology that utilise nano-scale bubbles to achieve higher OTRs owing to their large surface area and unique properties such as longevity and reactive oxygen species generation. This study, for the first time, investigated the feasibility of coupling nanobubble technology with constructed wetlands (CWs) for treating livestock wastewater. The results demonstrated that nanobubble-aerated CWs achieved significantly higher removal efficiencies of total organic carbon (TOC) and ammonia (NH4+-N), at 49 % and 65 %, respectively, compared to traditional aeration treatment (36 % and 48 %) and the control group (27 % and 22 %). The enhanced performance of the nanobubble-aerated CWs can be attributed to the nearly three times higher amount of nanobubbles (Ø < 1 μm) generated from the nanobubble pump (3.68 × 108 particles/mL) compared to the normal aeration pump. Moreover, the microbial fuel cells (MFCs) embedded in the nanobubble-aerated CWs harvested 5.5 times higher electricity energy (29 mW/m2) compared to the other groups. The results suggested that nanobubble technology has the potential to trigger the innovation of CWs by enhancing their capacity for water treatment and energy recovery. Further research needs are proposed to optimise the generation of nanobubbles, allowing them to be effectively coupled with different technologies for engineering implementation.Item Open Access Nanobubble technology enhanced ozonation process for ammonia removal(MDPI, 2022-06-10) Wu, Yuncheng; Tian, Wei; Zhang, Yang; Fan, Wei; Liu, Fang; Zhao, Jiayin; Wang, Mengmeng; Liu, Yu; Lyu, TaoOzone (O3) has been widely used for water and wastewater treatment due to its strong oxidation ability, however, the utilization efficiency of O3 is constrained by its low solubility and short half-life during the treatment process. Thereby, an integrated approach using novel nanobubble technology and ozone oxidation method was studied in order to enhance the ozonization of ammonia. Artificial wastewater (AW) with an initial concentration of 1600 mg/L ammonia was used in this study. In the ozone-nanobubble treatment group, the concentration of nano-sized bubbles was 2.2 × 107 particles/mL, and the bubbles with <200 nm diameter were 14 times higher than those in the ozone-macrobubble treatment control group. Ozone aeration was operated for 5 min in both nanobubble treatment and control groups, however, the sampling and measurement were conducted for 30 min to compare the utilization of O3 for ammonia oxidation. H+ was the by-product of the ammonia ozonation process, thus the pH decreased from 8 to 7 and 7.5 in nanobubble treatment and control groups, respectively, after 30 min of operation. The fast removal of ammonia was observed in both systems in the first 10 min, where the concentration of ammonia decreased from 1600 mg/L to 835 and 1110 mg/L in nanobubble treatment and control groups, respectively. In the nanobubble treatment group, ammonia concentrations kept the fast-decreasing trend and reached the final removal performance of 82.5% at the end of the experiment, which was significantly higher than that (44.2%) in the control group. Moreover, the first-order kinetic model could be used to describe the removal processes and revealed a significantly higher kinetic rate constant (0.064 min−1) compared with that (0.017 min−1) in the control group. With these results, our study highlights the viability of the proposed integrated approach to enhance the ozonation of a high level of ammonia in contaminated water.