Browsing by Author "Fashandi, Seyed Alireza Miran"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Compressor degradation management strategies for gas turbine aero-engine controller design(MDPI, 2021-09-10) Sun, Xiaohuan; Jafari, Soheil; Fashandi, Seyed Alireza Miran; Nikolaidis, TheoklisThe Advisory Council for Aeronautics Research in Europe (ACARE) Flight Path 2050 focuses on ambitious and severe targets for the next generation of air travel systems (e.g., 75% reduction in CO2 emissions per passenger kilometre, a 90% reduction in NOx emissions, and a 65% reduction in the noise emissions of flying aircraft relative to the capabilities of typical new aircraft in 2000). Degradation is an inevitable phenomenon as aero-engines age with significant impacts on the engine performance, emissions level, and fuel consumption. The engine control system is a key element capable of coping with degradation consequences subject to the implementation of an advanced management strategy. This paper demonstrates a methodological approach for aero-engine controller adjustment to deal with degradation implications, such as emission levels and increased fuel consumption. For this purpose, a component level model for an aero-engine was first built and transformed to a block-structured Wiener model using a system identification approach. An industrial Min-Max control strategy was then developed to satisfy the steady state and transient limit protection requirements simultaneously while satisfying the physical limitation control modes, such as over-speed, surge, and over-temperature. Next, the effects of degradation on the engine performance and associated changes to the controller were analysed thoroughly to propose practical degradation management strategies based on a comprehensive scientometric analysis of the topic. The simulation results show that the proposed strategy was effective in restoring the degraded engine performance to the level of the clean engine while protecting the engine from physical limitations. The proposed adjustments in the control strategy reduced the fuel consumption and, as a result, the emission level and carbon footprint of the engine.Item Open Access Modeling and control of the starter motor and start-up phase for gas turbines(MDPI, 2019-03-25) Jafari, Soheil; Fashandi, Seyed Alireza Miran; Nikolaidis, TheoklisImproving the performance of industrial gas turbines has always been at the focus of attention of researchers and manufacturers. Nowadays, the operating environment of gas turbines has been transformed significantly respect to the very fast growth of renewable electricity generation where gas turbines should provide a safe, reliable, fast, and flexible transient operation to support their renewable partners. So, having a reliable tools to predict the transient behavior of the gas turbine is becoming more and more important. Regarding the response time and flexibility, improving the turbine performance during the start-up phase is an important issue that should be taken into account by the turbine manufacturers. To analyze the turbine performance during the start-up phase and to implement novel ideas so as to improve its performance, modeling, and simulation of an industrial gas turbine during cold start-up phase is investigated this article using an integrated modular approach. During this phase, a complex mechatronic system comprised of an asynchronous AC motor (electric starter), static frequency converter drive, and gas turbine exists. The start-up phase happens in this manner: first, the clutch transfers the torque generated by the electric starter to the gas turbine so that the turbine reaches a specific speed (cranking stage). Next, the turbine spends some time at this speed (purging stage), after which the turbine speed decreases, sparking stage begins, and the turbine enters the warm start-up phase. It is, however, possible that the start-up process fails at an intermediate stage. Such unsuccessful start-ups can be caused by turbine vibrations, the increase in the gradients of exhaust gases, or issues with fuel spray nozzles. If, for any reason, the turbine cannot reach the self-sustained speed and the speed falls below a certain threshold, the clutch engages once again with the turbine shaft and the start-up process is repeated. Consequently, when modeling the start-up phase, we face discontinuities in performance and a system with variable structure owing to the existence of clutch. Modeling the start-up phase, which happens to exist in many different fields including electric and mechanical application, brings about problems in numerical solutions (such as algebraic loop). Accordingly, this study attempts to benefit from the bond graph approach (as a powerful physical modeling approach) to model such a mechatronic system. The results confirm the effectiveness of the proposed approach in detailed performance prediction of the gas turbine in start-up phase.Item Open Access A scientometric analysis and critical review of gas turbine aero-engines control: From Whittle engine to more-electric propulsion(Sage, 2020-09-17) Mohammadi, Seyed Jalal; Fashandi, Seyed Alireza Miran; Jafari, SoheilThe gas turbine aero-engine control systems over the past eight decades have been thoroughly investigated. This review purposes are to present a comprehensive reference for aero-engine control design and development based on a systematic scientometric analysis and to categorize different methods, algorithms, and approaches taken into account to improve the performance and operability of aircraft engines from the first days to present to enable this challenging technology to be adopted by aero-engine manufacturers. Initially, the benefits of the control systems are restated in terms of improved engine efficiency, reduced carbon dioxide emissions, and improved fuel economy. This is followed by a historical coverage of the proposed concepts dating back to 1936. A comprehensive scientometric analysis is then presented to introduce the main milestones in aero-engines control. Possible control strategies and concepts are classified into four distinct phases, including Single input- single output control algorithms, MIN-MAX or Cascade control algorithms, advanced control algorithms, More-electric and electronic control algorithms and critically reviewed. The advantages and disadvantages of milestones are discussed to cover all practical aspects of the review to enable the researchers to identify the current challenges in aircraft engine control systems.Item Open Access Theoretical and experimental study of a micro jet engine start-up behaviour(Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek, 2018-06) Montazeri-Gh, Morteza; Fashandi, Seyed Alireza Miran; Jafari, SoheilProper functioning of the start-up process in a micro jet engine is of great importance. This is due to the fact that the combustion chamber of such engine is so small and therefore, there is little time for fuel and air mixture to be present in the chamber. Hence, failed starts or repetitive attempts by the electric starter are very likely due to non-formation of the initial combustion. Also, the performance of the turbine start-up, impressively affects the limited life time of the micro jet engine. In this paper, an experimental study on the injection of compressed air during the start-up of a micro jet engine to improve its performance has been conducted. For this purpose, test components’ layout and a monitoring system are designed. The allowable pressure of the air injection has been calculated using both the engine dynamic model and experimental tests. The simulation results have also been compared and validated with the experimental test results. Finally, several tests were conducted to study the injection process of the compressed air form which, several results have been deduced including the reduction of maximum exhaust gas temperature (EGT) during the start-up, reduction of the start-up time interval and service lifetime enhancement. The method proposed in this paper is applicable on any micro jet engine with the similar structural form and starting process.Item Open Access Thermal management system architecture for hydrogen-powered propulsion technologies: practices, thematic clusters, system architectures, future challenges, and opportunities(MDPI, 2022-01-03) Nag Srinath, Akshay; Pena López, Álvaro; Fashandi, Seyed Alireza Miran; Lechat, Sylvain; di Legge, Giampiero; Nabavi, Seyed Ali; Nikolaidis, Theoklis; Jafari, SoheilThe thermal management system architectures proposed for hydrogen-powered propulsion technologies are critically reviewed and assessed. The objectives of this paper are to determine the system-level shortcomings and to recognise the remaining challenges and research questions that need to be sorted out in order to enable this disruptive technology to be utilised by propulsion system manufacturers. Initially, a scientometrics based co-word analysis is conducted to identify the milestones for the literature review as well as to illustrate the connections between relevant ideas by considering the patterns of co-occurrence of words. Then, a historical review of the proposed embodiments and concepts dating back to 1995 is followed. Next, feasible thermal management system architectures are classified into three distinct classes and its components are discussed. These architectures are further extended and adapted for the application of hydrogen-powered fuel cells in aviation. This climaxes with the assessment of the available evidence to verify the reasons why no hydrogen-powered propulsion thermal management system architecture has yet been approved for commercial production. Finally, the remaining research challenges are identified through a systematic examination of the critical areas in thermal management systems for application to hydrogen-powered air vehicles’ engine cooling. The proposed solutions are discussed from weight, cost, complexity, and impact points of view by a system-level assessment of the critical areas in the field.