Browsing by Author "Feng, Rida"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Portable biosensor combining CRISPR/Cas12a and loop-mediated isothermal amplification for antibiotic resistance gene ermB in wastewater(Elsevier, 2023-10-17) Mao, Kang; Zhang, Hua; Ran, Fang; Cao, Haorui; Feng, Rida; Du, Wei; Li, Xiqing; Yang, ZhugenWastewater is among the main sources of antibiotic resistance genes (ARGs) in the environment, but effective methods to quickly assess ARGs on-site in wastewater are lacking. Here, using the typical ARG ermB as the target, we report a portable biosensor combining CRISPR/Cas12a and loop-mediated isothermal amplification (LAMP) for the detection of ARGs. Six primers of LAMP and the crRNA of CRISPR/Cas12a were first designed to be preamplification with LAMP and lead Cas12a to recognize the ermB via base pairing. Due to the trans-cleavage activity of CRISPR/Cas12a after amplicon recognition, ssDNA probes modified with reporter molecules were used to implement a visual assay with lateral flow test strips and fluorescence. After a simple nucleic acid extraction with magnetic beads, the constructed biosensor possesses excellent sensitivity and selectivity as low as 2.75 × 103 copies/μL using fluorescence and later flow strips in wastewater. We further evaluated the community-wide prevalence of ermB in wastewater influent and found high mass loads of ermB during different months. This user-friendly and low-cost biosensor is applicable for rapid on-site ARG detection, providing a potential point-of-use method for rapid assessments of ARG abundance in wastewater from large city areas with many wastewater treatment plants and in resource-limited rural areas.Item Open Access Portable microfluidic devices for monitoring antibiotic resistance genes in wastewater(Springer, 2025-01-31) Feng, Rida; Mao, Kang; Zhang, Hua; Zhu, Hongxiang; Du, Wei; Yang, Zhugen; Wang, ShuangfeiAntibiotic resistance genes (ARGs) pose serious threats to environmental and public health, and monitoring ARGs in wastewater is a growing need because wastewater is an important source. Microfluidic devices can integrate basic functional units involved in sample assays on a small chip, through the precise control and manipulation of micro/nanofluids in micro/nanoscale spaces, demonstrating the great potential of ARGs detection in wastewater. Here, we (1) summarize the state of the art in microfluidics for recognizing ARGs, (2) determine the strengths and weaknesses of portable microfluidic chips, and (3) assess the potential of portable microfluidic chips to detect ARGs in wastewater. Isothermal nucleic acid amplification and CRISPR/Cas are two commonly used identification elements for the microfluidic detection of ARGs. The former has better sensitivity due to amplification, but false positives due to inappropriate primer design and contamination; the latter has better specificity. The combination of the two can achieve complementarity to a certain extent. Compared with traditional microfluidic chips, low-cost and biocompatible paper-based microfluidics is a very attractive test for ARGs, whose fluid flow in paper does not require external force, but it is weaker in terms of repeatability and high-throughput detection. Due to that only a handful of portable microfluidics detect ARGs in wastewater, fabricating high-throughput microfluidic chips, developing and optimizing recognition techniques for the highly selective and sensitive identification and quantification of a wide range of ARGs in complex wastewater matrices are needed.