Browsing by Author "Fitzpatrick, Michael E."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Effect of impact damage on fatigue performance of structures reinforced with GLARE bonded crack retarders(Elsevier, 2015-06-19) Syed, Abdul Khadar; Fitzpatrick, Michael E.; James E. Moffatt; Doucet, Jeremy; Durazo-Cardenas, IsidroFibre-Metal Laminates (FML) such as GLARE are of interest as bonded crack retarders (BCR) to improve the fatigue performance of aircraft structures. The degradation of the performance of the crack retarder in service if subjected to damage is a critical factor in designing with this concept. Bonded assemblies of an aluminium alloy substrate reinforced with a GLARE strap were prepared, and were subjected to low velocity impact damage onto the GLARE, with impact energies ranging from 10 to 60J. The thermal residual stresses developed during the bonding process of the GLARE to the aluminium were determined using neutron diffraction, and the change in the thermal residual stresses owing to impact damage onto the GLARE was evaluated. Pre- and post-impact fatigue performance of the BCR assemblies has been investigated. The results show that the BCR provides an improvement in fatigue life, but the reduction is impaired following impact damage. The results show that monitoring of impact damage will be critical in the damage tolerance assurance for aerospace structures containing bonded crack retarders.Item Open Access Influence of deposition strategies on residual stress in wire + arc additive manufactured titanium Ti-6Al-4V(MDPI, 2022-01-28) Ahmad, Bilal; Zhang, Xiang; Guo, Hua; Fitzpatrick, Michael E.; MacHado Santos Carvalho Neto, Leonor; Williams, StewartWire + arc additive manufacturing (WAAM) is a modern manufacturing process that has opened new possibilities for rapid builds and reductions in material wastage. This paper explores residual stress in WAAM Ti-6Al-4V walls built using three different deposition strategies: single bead, parallel path, and oscillation path. The effect of interlayer hammer peening and interlayer temperature was investigated for the single bead walls. We also examined the residual stress in compact-tension (C(T)) coupons extracted from large builds (walls) with crack orientation either parallel with or perpendicular to the build direction. This type of sample is often used for the measurement of the fatigue crack growth rate. The contour method was used for experimental determinations of residual stress. In addtion, residual stress in the C(T) coupons was estimated by finite element (FE) analysis. A good agreement was achieved between the contour method and FE analysis. The oscillation-path wall had the lowest residual stress values. For the single bead walls built with various process conditions, residual stress was significantly reduced after removing the substrate. A interlayer temperature of 110 °C resulted in much higher residual stress values in the wall (both tensile and compressive) compared to the continuous build, with much higher interlayer temperature.