Browsing by Author "Gauthier, Pierre"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Numerical investigation into the impact of operating boundary conditions on NOx formation in hydrogen micromix combustion system(American Society of Mechanical Engineers, 2023-09-28) Singh, Gaurav; Zghal, Malika; Sun, Xiaoxiao; Gauthier, Pierre; Sethi, VishalHydrogen micromix combustion is a promising technology for achieving zero mission-level carbon emissions with ultra-low NOx potential. A reduced-order NOx emissions prediction model is essential for preliminary hydrogen engine cycle design space exploration and optimization studies. Hence, this paper investigates the influence of key operating conditions, including equivalence ratio (ϕ), combustor inlet temperature (T3) and pressure (P3) on NOx emissions in a hydrogen micromix combustion. The assessments were performed using steady Reynolds-Averaged Navier-Stokes (RANS) simulations with thermal NOx model at various power conditions representative of the aircraft mission. The RANS model constants were calibrated against Large Eddy Simulations (LES) conducted previously by the group. The comprehensive numerical database was developed from these assessments to derive a NOx emissions correlation as a function of the operating conditions defined above. The study demonstrates that the LES-calibrated RANS models can predict NOx emissions trends, which agrees with the known physics of NOx formation. When experimental data is not yet available, the resulting correlation can be used at the preliminary stage of the design process to identify low NOx engine cycles that merit (more resource-intensive) higher fidelity numerical simulations or experiments. The methodology is flexible and extensible and may be applied to future low-emissions hydrogen combustion technologies.Item Open Access Numerical investigation of potential cause of instabilities in a hydrogen micromix injector array(American Society of Mechanical Engineers, 2021-09-16) Sun, Xiaoxiao; Abbott, David; Singh, Abhay Vir; Gauthier, Pierre; Sethi, BobbyHydrogen micromix combustion is a promising concept to reduce the environmental impact of both aero and land-based gas turbines by delivering carbon-free and ultra-low-NOx combustion. The high-reactivity and wide flammability limits of hydrogen in a micromix combustor can produce short and small diffusion flames at lean overall equivalence ratios. There is limited published information on the instabilities of such hydrogen micromix combustors. Diffusion flames are less prone to flashback and autoignition problems than premixed flames as well as combustion dynamics issues. However, with the high laminar flame speed of hydrogen, lean fuel air ratio (FAR) and very compact flames, the risk of combustion dynamics for micromix flames should not be neglected. In addition, the multi-segment array arrangement of the injectors could result in both potential causes and possible solutions to the instabilities within the combustor. This paper employs numerical simulations to investigate potential sources of instabilities in micromix flames by modelling an extended array of injectors, represented by either single or multiple injectors with appropriate boundary conditions at elevated pressure and temperature. Both RANS and LES simulations were performed and used to derive the Flame Transfer Function (FTF) of the micromix flames to inform lower order thermoacoustic modelling of micromix combustion. LES simulations indicate that the gain of the FTF is lower than predicted from the RANS simulations indicating a lower risk of high frequency thermoacoustic issues than suggested by RANS. When LES simulations are conducted for certain representative configurations it is observed that there are persistent high-frequency instabilities due to the interaction of the flames. This phenomenon is not observed when only a single injector is modelled. LES simulations for two injectors are conducted with various geometries and radial boundary conditions to identify the cause of the instabilities. It is concluded that the observed high-frequency instabilities are related to aerodynamic jet instabilities enhanced by both aerodynamic and acoustic feedback and key geometric features affecting the occurrence of the instabilities are identified. Only transient simulations such as LES are able to capture such effects and RANS simulations typically used in early stage design will not identify this issue.Item Open Access Numerical investigation of the breakup mode and trajectory of liquid jet in a gaseous crossflow at elevated conditions(Cambridge University Press, 2021-09-13) Zhu, Yu; Sun, Xiaoxiao; Sethi, Vishal; Gauthier, Pierre; Guo, S.; Bai, R.; Yan, D.The commercial Computational Fluid Dynamics (CFD) software STAR-CCM+ was used to simulate the flow and breakup characteristics of a Liquid Jet Injected into the gaseous Crossflow (LJIC) under real engine operating conditions. The reasonable calculation domain geometry and flow boundary conditions were obtained based on a civil aviation engine performance model similar to the Leap-1B engine which was developed using the GasTurb software and the preliminary design results of its low-emission combustor. The Volume of Fluid (VOF) model was applied to simulate the breakup feature of the near field of LJIC. The numerical method was validated and calibrated through comparison with the public test data at atmospheric conditions. The results showed that the numerical method can capture most of the jet breakup structure and predict the jet trajectory with an error not exceeding ±5%. The verified numerical method was applied to simulate the breakup of LJIC at the real engine operating condition. The breakup mode of LJIC was shown to be surface shear breakup at elevated condition. The trajectory of the liquid jet showed good agreement with Ragucci’s empirical correlation.Item Open Access Thermoacoustic behaviour of a hydrogen micromix aviation gas turbine combustor under typical flight conditions(American Society of Mechanical Engineers, 2021-09-16) Abbott, David; Giannotta, Alessandro; Sun, Xiaoxiao; Gauthier, Pierre; Sethi, VishalHydrogen micromix is a candidate combustion technology for hydrogen aviation gas turbines. The introduction and development of new combustion technologies always carries the risk of suffering from damaging high amplitude thermoacoustic pressure oscillations. This was a particular problem with the introduction of lean premixed combustion systems to land based power generation gas turbines. There is limited published information on the thermoacoustic behaviour of such hydrogen micromix combustors. Diffusion flames are less prone to flashback and autoignition problems than premixed flames and conventional diffusion flames are less prone to combustion dynamics issues. However, with the high laminar flame speed of hydrogen, lean fuel air ratio (FAR) and very compact flames, the risk of combustion dynamics for micromix flames should not be neglected and a comparison of the likely thermoacoustic behaviour of micromix combustors and kerosene fueled aviation combustors would inform the early stage design of engine realistic micromix combustors. This study develops a micromix combustor concept suitable for a modern three spool, high bypass ratio engine and derives the acoustic Flame Transfer Function (FTF) at typical engine operating conditions for top of climb, take-off, cruise, and end of runway. The FTF is derived using CFD and FTF models based on a characteristic flame delay. The relative thermoacoustic behaviour for the four conditions is assessed using a low order acoustic network code. The comparisons suggest that the risk of thermoacoustic instabilities associated with longitudinal waves at low frequencies (below 1kHz) is small, but that higher frequency longitudinal modes could be excited. The sensitivity of the combustor thermoacoustic behaviour to key combustor dimensions and characteristic time delay is also investigated and suggests that higher frequency longitudinal modes can be significantly influenced by combustion system design. The characteristic time delay and thus FTF for a Lean Premixed Prevapourised (LPP) kerosene combustor is derived from information in the literature and the thermoacoustic behaviour of the micromix combustor relative to that of this kerosene combustor is determined using the same low order modelling approach. The comparison suggests that the micromix combustor is much less likely to produce thermoacoustic instabilities at low frequencies (below 1kHz), than the LPP combustor even though the risk in the LPP combustor is small. It is encouraging that this simple approach used in a preliminary design suggests that the micromix combustor has lower risk at low frequency than a kerosene combustor and that the risk of higher frequency longitudinal modes can be reduced by appropriate combustion system design. However, more detailed design, more rigorous thermoacoustic analysis and experimental validation are needed to confirm this.