Browsing by Author "Gauthier, Pierre Q."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access Characterising hydrogen micromix flames: combustion model calibration and evaluation(American Society of Mechanical Engineers, 2021-01-11) López-Juárez, Marcos; Sun, Xiaoxiao; Sethi, Bobby; Gauthier, Pierre Q.; Abbott, DavidHydrogen micromix combustion is a promising concept to reduce the environmental impact of both aero and land-based gas turbines by delivering carbon-free and ultra-low-NOx combustion without the risk of autoignition or flashback. The ENABLEH2 project aims to demonstrate the feasibility of such a switch to hydrogen for civil aviation, within which the micromix combustion, as a key enabling technology, will be matured to TRL3. The micromix combustor comprises thousands of small diffusion flames for which air and fuel are mixed in a cross-flow pattern. This technology is based on the idea of minimizing the scale of mixing to maximize mixing intensity. The high-reactivity and wide flammability limits of hydrogen in a micromix combustor can produce short and low-temperature small diffusion flames in lean overall equivalence ratios. For hydrogen-air mixtures there is a need to further characterise the physical importance and calibration process of the laminar Schmidt (Sc), Lewis (Le) and Prandtl (Pr) and turbulent Schmidt (Sc) numbers. In addition, there is limited numerical and experimental data about flame characteristics and emissions of hydrogen micromix combustor at high pressure and temperature conditions. In this paper, the CFD software STAR-CCM+ was used with the FGM (Kinetic Rate) combustion model to simulate and calibrate hydrogen micromix flames. The research was divided into two parts. In the first part, the values of laminar Schmidt, Lewis and Prandtl numbers for H2 and air, non-reactive, flow mixtures were estimated as 0.22, 0.3 and 0.75 from correlations obtained in the literature. The typical Borghi diagram has been modified to represent this type of diffusion flame, since the assumption of Sc = Le = Pr = 1 can not be applied to hydrogen micromix flames and it is only for premixed flames. This diagram characterizes flame regime based on Damköhler (Da), Karlovitz (Ka) and turbulent Reynolds (Ret) numbers that were calculated from preliminary CFD simulations. In the second part, the value of laminar Schmidt number was set as constant while laminar Lewis and Prandtl numbers were obtained from the flamelet tables. A Turbulent Schmidt number was then obtained by comparing RANS and LES simulations of a single injector. If Sct > 0.2, the predicted NOx production of RANS simulations approaches that of LES; while Sct < 0.2 provides similar overall flame structure between RANS and LES. It is concluded that, for the current simulations, Sct = 0.2 is a good compromise between flame structure and emissions prediction. Flame characteristics and NOx emissions given by Thickened Flame and FGM Kinetic Rate models in a single injector geometry were also compared.Item Open Access Comparison of hydrogen micromix flame transfer functions determined using RANS and LES(ASME, 2019-11-05) McClure, Jonathan; Abbott, David; Agarwal, Parash; Sun, Xiaoxiao; Babazzi, Giulia; Sethi, Vishal; Gauthier, Pierre Q.Hydrogen has been proposed as an alternative fuel to meet long term emissions and sustainability targets, however due to the characteristics of hydrogen significant modifications to the combustion system are required. The micromix concept utilises a large number of miniaturised diffusion flames to improve mixing, removing the potential for local stoichiometric pockets, flash-back and autoignition. No publicly available studies have yet investigated the thermoacoustic stability of these combustion systems, however due to similarities with lean-premixed combustors which have suffered significant thermoacoustic issues, this risk should not be neglected. Two approaches have been investigated for estimating flame response to acoustic excitations of a single hydrogen micromix injector element. The first uses analytical expressions for the flame transfer function with constants obtained from RANS CFD while the second determines the flame transfer function directly using unsteady LES CFD. Results show the typical form of the flame transfer function but suggest micromix combustors may be more susceptible to higher frequency instabilities than conventional combustion systems. Additionally, the flame transfer function estimated using RANS CFD is broadly similar to that of the LES approach, therefore this may be suitable for use as a preliminary design tool due to its relatively low computational expense.Item Open Access Comparison of tabulated and complex chemistry turbulent-chemistry interaction models with high fidelity large eddy simulations on hydrogen flames(American Society of Mechanical Engineers, 2021-01-11) Zghal, M.; Sun, Xiaoxiao; Gauthier, Pierre Q.; Sethi, VishalHydrogen micromix combustion is a promising concept to reduce the environmental impact of both aero and land-based gas turbines by delivering carbon-free and ultra-low-NOx combustion without the risk of autoignition or flashback. The EU H2020 ENABLEH2 project aims to demonstrate the feasibility of such a switch to hydrogen for civil aviation, within which the micromix combustion, as a key enabling technology, will be matured to TRL3. The micromix combustor comprises thousands of small diffusion flames where air and fuel are mixed in a crossflow pattern. This technology is based on the idea of minimizing the scale of mixing to maximize mixing intensity. The high-reactivity and wide flammability limits of hydrogen in a micromix combustor can produce short and low-temperature small diffusion flames in lean overall equivalence ratios. In order to mature the hydrogen micromix combustion technology, high quality numerical simulations of the resulting short, thin and highly dynamic hydrogen flames, as well as predictions of combustion species, are essential. In fact, one of the biggest challenges for current CFD has been to accurately model this combustion phenomenon. The Flamelet Generated Manifold (FGM) model is a combustion model that has been used in the past decades for its predicting capabilities and its low computational cost due to its reliance on pre-tabulated combustion chemistry, instead of directly integrating detailed chemistry mechanisms. However, this trade for a lower computational cost may have an impact on the solution, especially when considering a fuel such as Hydrogen. Therefore, it is necessary to compare the FGM model to another combustion modelling approach which uses more detailed complex chemistry. The main focus of this paper then, is to compare the flame characteristics in terms of position, thickness, length, temperature and emissions obtained from LES simulations done with the FGM model, to the results obtained with more complex chemistry models, for hydrogen micromix flames. This will be done using STAR-CCM+ to determine the most suitable numerical approach required for the design of injection systems for ultra-low NOx.Item Open Access Development and application of a preliminary design methodology for modern low emissions aero combustors(SAGE, 2020-04-23) Liu, Yize; Sun, Xiaoxiao; Sethi, Vishal; Li, Yi-Guang; Nalianda, Devaiah; Abbott, David; Gauthier, Pierre Q.; Xiao, Bairong; Wang, LuIn this article, a preliminary design framework containing a detailed design methodology is developed for modern low emissions aero combustors. The inter-related design elements involving flow distribution, combustor sizing, heat transfer and cooling, emission and performance are coupled in the design process. The physics-based and numerical methods are provided in detail, in addition to empirical or semi-empirical methods. Feasibility assessment on the developed work is presented via case studies. The proposed combustor sizing methodology produces feasible combustor dimensions against the public-domain low emissions combustors. The results produced by the physics-based method show a reasonable agreement with experimental data to represent NOx emissions at key engine power conditions. The developed emission prediction method shows the potential to assess current and future technologies. A two-dimensional global prediction on liner wall temperature distribution for different cooling systems is reasonably captured by the developed finite difference method. It can be of use in the rapid identification of design solutions and initiating the optimisation of the design variables. The altitude relight efficiency predicted shows that the method could be used to provide an indicative assessment of combustor altitude relight capability at the preliminary design phase. The methodology is applied and shows that it enables the automatic design process for the development of a conceptual lean staged low emissions combustor. The design evaluation is then performed. A sensitivity analysis is carried out to assess the design uncertainties. The optimisation of the air distribution and cooling geometrical parameters addresses the trade-off between the NOx emissions and liner wall cooling, which demonstrates that the developed work has potential to identify and solve the design challenges at the early stages of the design process.Item Open Access Injector design space exploration for an ultra-low NOx hydrogen micromix combustion system(ASME, 2019-11-05) Agarwal, Parash; Sun, Xiaoxiao; Gauthier, Pierre Q.; Sethi, VishalThe depletion of fossil fuel resources, as well as the increasing environmental concerns have become the driving forces towards the research and development necessary for the introduction of alternative fuel such as hydrogen into civil aviation. Hydrogen is a suitable energy source primarily because it is free of carbon and other forms of impurities and is also the most abundant element in the universe. The advantages of using Liquid Hydrogen (LH2) for civil aviation extends beyond carbon-free mission level emissions; LH2 combustion can potentially reduce NOx emission by up to 90%, providing long-term sustainability and unrivalled environmental benefits. The paper presents a simplified parametric analysis to investigate the influence of various injector design parameters on a hydrogen micromix combustor reactive flow field. The main characteristics investigated are the flame structure (shape and position), the aerodynamic stabilization of the flame and the resulting NOx emissions. The design parameters include variations in the air-feed dimensions and the hydrogen injection diameter. A suitable numerical model was established by comparing various turbulence modelling approaches, reaction mechanisms and turbulence-chemistry interaction modelling schemes. The predictive capabilities, and limitations, of each of these modelling approaches, are assessed. The numerical challenges and limitations associated with modelling H2/air combustion at high pressure and temperature conditions are detailed. The influence of varying the injector design parameters on the mixing and hence the NOx characteristics is assessed.Item Open Access NOx emissions predictions for a hydrogen micromix combustion system(ASME, 2019-11-05) Babazzi, Giulia; Gauthier, Pierre Q.; Agarwal, Parash; McClure, Jonathan; Sethi, VishalBeing free from carbon content, hydrogen has been considered as a promising candidate to reduce pollutant emissions in Gas Turbine Combustion Systems. Due to hydrogen’s significantly different burning characteristics, its implementation requires adjustments to the design philosophies of traditional combustion chambers. The micromix concept offers an alternative diffusive combustion injection system, improving the mixing characteristics without the risk associated with pre-mixing, thereby reducing the likelihood of hotspots forming. The importance of turbulence-chemistry interaction modelling, particularly for highly diffusive flames such as hydrogen, has been widely addressed. A turbulence-chemistry interaction study on such a micromix injector was performed investigating the coupling between the Flamelet Generated Manifold (FGM) combustion model and different hydrogen reaction mechanisms. This methodology correctly reproduces the typical micromix micro-flame behaviour and the analysed mechanisms are shown to be in good agreement in terms of flow characteristics prediction. A comparative study between two reduced order emissions prediction models was then carried out: a CFD post-processing technique for NOx emissions calculations and a hybrid CFD-CRN approach were explored. Due to the coupling between accurate turbulence-chemistry interaction modelling and the ability to handle detailed chemistry, the hybrid CFD-CRN approach gives valuable results with a modest computational cost and it could be used as an optimising tool during the injector geometry design process.Item Open Access Numerical investigation into the impact of injector geometrical design parameters on hydrogen micromix combustion characteristics(American Society of Mechanical Engineers, 2021-01-11) Sun, Xiaoxiao; Agarwal, Parash; Carbonara, Francesco; Abbott, David; Gauthier, Pierre Q.; Sethi, BobbyHydrogen micromix combustion is a promising concept to reduce the environmental impact of both aero and land-based gas turbines by delivering carbon-free and ultra-low-NOx combustion without the risk of autoignition or flashback. As a part of the ENABLEH2 project, the current study focuses on the influence of design parameters on the micromix hydrogen combustion injectors. This study provides deeper insights into the design space of a hydrogen micromix injection system via numerical simulations. The key geometrical design parameters of the micromix combustion system are the sizing of the air gates and the hydrogen injector orifices together with the offset distance between air gate and hydrogen injection, the mixing distance and the injector to injector spacing. This paper first presents results of the numerical simulation of four designs, down selected from a series of combinations of the key design parameters, including cases with low and high momentum flux ratio, weak and strong flame-flame interaction. It was discovered that the hydrogen/air mixing characteristics, and flame to flame interactions, are the main factors influencing the combustor gas temperature distributions, flame lengths and the corresponding NOx production. The current study then focused on the effect of air gate geometry on the mixing characteristics, flame shape and temperature distribution. The momentum flux ratio was kept constant throughout this investigation by keeping the air gate area constant. Variations of the original baseline air gate design were studied, followed by a study of various novel air gate geometries, including circular, semi-circular and elliptical shapes. It is concluded that NOx production is influenced by a number of factors including jet penetration flame interactions and air gate shape and that there is a “Sweet Spot” that results in the lowest practicable NOx production. Flatter and wider air gate shapes tend to yield the lowest temperature and consequently the lowest NOx. Reduced interaction between flames also tends to reduce NOx and by manipulating hydrogen penetration, there is the potential to further reduce the NOx production.Item Open Access Preliminary CFD Study on the effect of fuel injector coking on fuel spray characteristics(American Society of Mechanical Engineers (ASME), 2018-02-02) Agarwal, Parash; Sethi, Vishal; Gauthier, Pierre Q.; Sun, Xiaoxiao; Liu, YizeFuel injector coking involves deposit formation on the external or the internal surfaces of an injector or nozzle. This deposition of carbonaceous particles can result in uneven fuel-spray characteristics or localised burning (hot spots), which may eventually lead to mechanical failure or simply have a detrimental effect on the combustion system. This study focuses on the use of numerical methods to investigate the effect of coke formation on both the atomiser internal flow passages and its spray characteristics. Three different cases are examined; one investigating the clean injector; the second investigating the effect of internal coking; and the third investigating the effect of nozzle tip coking. A pressure swirl atomiser was considered for the purpose of the study. Validation of the numerical results for the clean injector condition is carried out against published experimental data. Two arbitrary geometries of coke deposits were created. The Volume of Fluid (VOF) multiphase model has been used in conjugation with a Geometrical Reconstruction Scheme (GRS) to simulate the interface representing the two phases. Spray cone angle and the liquid film thickness for the clean injector condition predicted by numerical simulation agreed well with the experimental data. Instabilities in the air core and the spray angle were also observed because of the presence of coke layers. Fouling present on the injector tip resulted in an earlier breakup of the film which can thereby affect the flame lift-off length. These stated observations can have significant implications both on the performance as well as the life of the combustion systems, thereby establishing the relevance of this study.Item Open Access Validation of a stochastic breakup model for turbulent jets in high-speed crossflow: assessment of turbulent interactions and sensitivity to boundary conditions(Begell House, 2023-04-25) Zghal, Malika; Sun, Xiaoxiao; Gauthier, Pierre Q.; Sethi, VishalImproving the mixing of fuel and air by injecting a turbulent liquid fuel jet into a high-speed cross-flowing gas can reduce the emissions of gas turbine applications. To facilitate and hasten the development of such low-emissions technologies, accurate predictions of the spray characteristics are needed. The objective of the present study is to validate the predictive capabilities of a stochastic breakup model for turbulent transverse jets over a wide range of representative pressures and atomization characteristics. The effect of turbulence modeling is also assessed to provide accurate and computationally less expensive Eulerian−Lagrangian transient approaches. To do so, the predictions made with the large eddy simulation (LES) approach for different subgrid-scale (SGS) models and with the synthetic eddy method (SEM) are compared to the ones made using the unsteady Reynolds-averaged Navier-Stokes (RANS) approach with and without a turbulent dispersion model. The sensitivity of the numerical methodology to the upstream velocity profile, pressure, and momentum flux ratio were also assessed. Properly accounting for the upstream gas velocity profile was found to be critical to ensure accurate predictions of the spray characteristics. The unsteady RANS (URANS) turbulent approach coupled with the turbulent dispersion model showed good agreement with experimental data, but the LES approach tends to overpredict the spray penetration and underpredict the Sauter mean diameter (SMD). This could be due to the lower turbulent interactions it predicts, which may lead to lower momentum transfer between the phases.