Browsing by Author "Gu, Feng"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access CO2 capture performance of gluconic acid-modified limestone-dolomite mixtures under realistic conditions(American Chemical Society , 2019-07-10) Wang, Ke; Gu, Feng; Clough, Peter T.; Zhao, Pengfei; Anthony, Edward J.Calcium Looping (CaL) technology has become one of the most attractive ways to capture CO2 from fossil fuel power plants. However, with increasing numbers of cyclic reactions, the CO2 capture capacity rapidly decreases. To address this shortcoming, limestone-dolomite mixtures modified by gluconic acid were explored to prepare highly effective, MgO-stabilized, CaO sorbents that exhibited a high and stable CO2 capture capacity over multiple cycles. The sorbents were all tested over 10 carbonation-calcination cycles and were performed under realistic CaL conditions (calcination in a high CO2 concentration). The results of this research have demonstrated that the inhomogeneous composition that occurs between CaO and MgO - caused by the small CaO crystallite size, porous texture, nanosheet (~100 nm thick) morphology - provides sufficient void space for the volume expansion during carbonation to mitigate the effects of repeated cycle sintering and retain structural stability. A MgO content as low as 10 mol% was able to ensure a superior CO2 capture performance with a fast carbonation rate, high CO2 carrying capacities and remarkable stability. Furthermore, these sorbents retained a conversion (above 90%) over multiple cycles following a recarbonation stepItem Open Access Molten shell-activated, high-performance, un-doped Li4SiO4 for high-temperature CO2 capture at low CO2 concentrations(Elsevier, 2020-10-16) Wang, Ke; Gu, Feng; Clough, Peter T.; Zhao, Youwei; Zhao, Pengfei; Anthony, Edward J.Lithium orthosilicate (Li4SiO4) represents a potential class of high-temperature sorbents for CO2 capture in power plants and sorption enhanced methane reforming to produce H2. However, conventional wisdom suggests that pure Li4SiO4 should have extremely slow sorption kinetics at realistic low CO2 concentrations. Here, we report the opposite result: using a simple and cost-effective glucose-based mild combustion procedure, an unusually efficient and pure form of Li4SiO4 (MC-0.6) was synthesized to achieve a maximum uptake capacity of 35.0 wt% at 580 °C for CO2 concentrations under 15 vol% and maintained this capacity over multiple cycles. The characterization results showed that highly porous nano-agglomerate-like (50–100 nm) morphologies were apparent and ensured a rapid surface-sorption of CO2. In this process, a macroporous nano-sized Li2SiO3 cover on the melt layer of Li2CO3 was identified for the first time. This special structure appeared to accelerate the transportation of CO2 and the diffusion of Li+ and O2− through a molten layer enhancing contact with CO2. Thus, the sample MC-0.6 reduced both the surface-sorption and diffusion kinetics dependence on low CO2 concentrations. Rather than use traditional approaches (controlled morphologies combined with doping), we have demonstrated that the slow kinetics can be overcome simply by a controlled morphologies strategy, which opens up a new direction for the synthesis of high-performance Li4SiO4 sorbents.Item Open Access Porous MgO-stabilized CaO-based powders/pellets via a citric acid-based carbon template for thermochemical energy storage in concentrated solar power plants(Elsevier, 2020-01-21) Wang, Ke; Gu, Feng; Clough, Peter T.; Zhao, Pengfei; Anthony, BenThe reversible CaO/CaCO3 carbonation reaction (CaL) is one of the most promising candidates for high-temperature thermochemical energy storage (TCES) in concentrated solar power plants (CSP). Here, a sacrificial citric acid-based carbon template was developed to produce high-performance CaO-based sorbents to mitigate the progressive deactivation with sequential carbonation-calcination cycling. The carbon template was formed through in situ pyrolysis of citric acid in a simple heating process under nitrogen. After a secondary calcination step in air, a stable porous MgO-stabilized nano-CaO powder was generated and achieved high long-term effective conversion due to its resistance to pore plugging and sintering. By dry mixing citric acid with limestone-dolomite mixtures, this procedure can also be applied to synthesize MgO-stabilized CaO pellets via an extrusion–spheronization route, which resulted in comparably stable and effective conversion as the optimized CaO powder. Additionally, the considerable mechanical strength of MgO-stabilized CaO pellets should enable their realistic application in fluidized bed reactors. Thus, this simple, cost-effective and easily-scalable synthesis technique appears to have great potential for CSP-TCES under high temperature operation.